ЯДЕРНАЯ МЕДИЦИНА

УДК 615.849.1:536.2.023:519.688

DOI 10.26583/npe.2019.4.12

МОЩНЫЙ ЭЛЕКТРОННЫЙ УСКОРИТЕЛЬ ДЛЯ ПРОИЗВОДСТВА НЕЙТРОНОВ И РАДИОИЗОТОПОВ

Е.А. Онищук*,**, Ю.А. Кураченко***, Е.С. Матусевич*

* Обнинский институт атомной энергетики НИЯУ МИФИ

249040, Калужская обл., г. Обнинск, Студгородок, 1

* * АНО ДПО «Техническая академия Росатома»

249031, Калужская обл., г. Обнинск, Курчатова, 21

*** ФГБНУ Всероссийский научно-исследовательский институт радиологии и агроэкологии

249032, Калужская обл., г. Обнинск, Киевское шоссе, 109 км

Рассматривается возможность использования существующих мощных ускорителей электронов для нейтронной терапии и производства радиоизотопов. Для обоих приложений проведены расчеты, и результаты нормированы на характеристики существующего ускорителя MEVEX (средний электронный ток 4 мА при моноэнергетическом пучке электронов 35 МэВ). Объединяющей проблемой для приложений является задача охлаждения мишени – при энергии пучка около 140 кВт почти половина этой энергии высвобождается непосредственно в мишени. Поэтому в качестве мишени был выбран жидкий тяжелый металл, чтобы соединить высокое качество термогидравлики с максимальной производительностью как тормозного излучения, так и фотонейтронов. Мишени оптимизированы с использованием прецизионных кодов для задач переноса излучения и термогидравлики. Оптимизация проводилась также по установке в целом – по составу материала и конфигурации блока выведения фотонейтронов для нейтронозахватной терапии (НЗТ) и по схеме генерации тормозного излучения для получения радиоизотопов. Фотонейтронный блок обеспечивает приемлемое качество пучка для НЗТ с большим значением плотности потока нейтронов на выходе ~ $2 \cdot 10^{10}$ см⁻²с⁻¹, что на порядок выше, чем значения на выходе существующих и проектируемых реакторных пучков. Такая интенсивность на выходе пучка позволит во многих случаях отказаться от фракционированного облучения. Что касается производства радиоизотопов, то по реакции (γ, n) в расчетах получено 43 радионуклида в пяти группах. Например, реакцией Мо¹⁰⁰(γ, n)⁹⁹Мо предшественник ⁹⁹Мо главного диагностического изотопа ^{99m}Тс после облучения в течение 24 ч может быть наработан с удельной активностью ~ 6 Ки/г и полной активностью мишени 1.8 кКи. Предложенные схемы генерации и вывода фотонейтронов и тормозного излучения имеют ряд очевидных преимуществ перед традиционными методами: а) применение ускорителей электронов для производства нейтронов намного безопаснее и дешевле, чем использование реакторных пучков; б) ускоритель с мишенью и блок вывода пучка с необходимым оборудованием и оснасткой можно без проблем разместить на территории клиники; в) предлагаемая проточная мишень для НЗТ из жидкого галлия, который также служит теплоносителем, является «экологически чистым» материалом – его активация относительно невелика и быстро (примерно через четыре дня) спадает до фонового уровня.

© Е.А. Онищук, Ю.А. Кураченко, Е.С. Матусевич, 2019 142 Ключевые слова: электронный ускоритель, фотонейтроны, нейтронозахватная терапия, модернизация пучка, производство радиоизотопов, реакция (γ, n), наработка ¹⁰⁰Мо, компактная установка в клинике.

ВВЕДЕНИЕ

Мощный источник фотонейтронов для медицины рассмотрен в [1]. В [2] получена оптимальная конфигурация блока вывода пучка фотонейтронов для нейтронозахватной терапии (H3T), а в [3, 4] изучены термогидравлика комбинированной проточной мишени (W + Ga) и возможности применения пучка для лучевой терапии. Стационарный фрагмент мишени – матрица из тугоплавкого вольфрама, через которую протекает галлий, позволяет резко увеличить выход фотонейтронов по сравнению с мишенью только из галлия. Для нормировки результатов расчета использовались данные доступного ускорителя MEVEX [5]: средний ток 4 мА при энергии электронов 35 МэВ.

Природный галлий представлен двумя изотопами: 69 Ga (60,1%)+ 71 Ga (39,9%). Это легкоплавкий металл (t_{nn} = 29,8°C) плотностью 5.904 г/см³ в твердом состоянии и 6.095 г/см³ в жидком. Будучи расплавлен, галлий длительное время остается в жидкой фазе при комнатной температуре. При этом галлий имеет широкий диапазон температур жидкой фазы (~ 2200°C), поэтому радиационное энерговыделение можно достаточно просто снять [3].

Активация природного галлия происходит за счет фотореакций и реакций под действием собственных нейтронов. Основные процессы: 69,71 Ga $(\gamma, n)^{68,70}$ Ga, 69,71 Ga $(n, 2n)^{68,70}$ Ga, 69,71 Ga $(n, \gamma)^{70,72}$ Ga приводят к короткоживущим продуктам реакций 68 Ga ($T_{1/2} = 68,3$ мин), 70 Ga ($T_{1/2} = 21,2$ мин) и 72 Ga ($T_{1/2} = 14,1$ ч). Как показывают расчеты, при генерации нейтронных полей, приемлемых для H3T, и при условии циркуляции рабочего тела мишени полная активность галлия (для типичных сценариев облучения и количества сеансов) спадает до уровня естественного фона за время, не превышающее четырех суток (рис. 1).

Рис. 1. Спад активности галлия после типичного сценария облучения (отн. ед.)

Результаты, приводимые далее, получены в расчетах транспорта излучений (код

MCNP5 [6]) с использованием библиотеки ядерных данных TENDL-2014/2017, основанной на программе ядерных реакций TALYS-1.9 [7]. Термогидравлика мишени была рассчитана с помощью кода STAR-CD[®] [8].

ГЕНЕРАЦИЯ ФОТОНЕЙТРОНОВ

Модернизация НЗТ-пучка

Цель модернизации пучка – увеличение плотности потока нейтронов на выходе без ухудшения характеристик пучка, существенных для H3T и защиты пациента. Для модернизации был выбран вариант вывода пучка с максимальным значением плотности потока на выходе [4]. На рисунке 2 сопоставлены сечения оптимальной версии блока вывода пучка [4] и версии, предлагаемой в работе.

Рис. 2. Осевые сечения блока вывода осесимметричного пучка для H3T: «наилучший» вариант из [4] слева и модернизированная версия справа (визуализации входного файла MCNP5)

Блок вывода пучка представляет собой осесимметричную сборку из цилиндрических и конических слоев и несет защитные и коллимирующие функции (конический слой из свинца), а также функции формирователя спектра, требуемого для H3T. На рисунке представлены фрагменты блока вывода с коллимационной системой: канал, заполненный формирователем спектра (1 – дифторид свинца PbF₂, выполняющий также функцию гамма-фильтра); канал окружен коллиматором (2 – Pb, основная функция – замедление и канализация нейтронов). В коллимационной системе гидрид циркония ZrH_{1,8} (3) несет функцию легкой защиты, на выходе канала борированный полиэтилен и пластинка Cd толщиной 1 мм (4) являются фильтром тепловых нейтронов.

При взаимодействии ускоренных электронов с массивной мишенью W+Ga основным каналом потери энергии является тормозное излучение. При энергиях электронов выше 8 – 10 МэВ тормозные гамма-кванты, поглощаясь ядрами W и Ga, генерируют нейтроны в реакциях (γ, п) в области так называемого гигантского дипольного резонанса с относительно большими сечениями. Так максимальные (γ, п)-сечения на основных изотопах естественного W при энергии ~ 15 МэВ лежат в диапазоне 490 – 670 мб, для ⁶⁹Ga и ⁷¹Ga 102 мб при 17 МэВ и 160 мб при 19 МэВ соответственно.

Дополнительные расчеты дали возможность обоснованно внести изменения в конфигурацию и материальный состав блока вывода пучка, позволившие безопасно увеличить главный функционал – плотность потока эпитепловых нейтронов на выходе пучка.

Эти изменения состояли в следующем:

– пластина Cd на выходе канала была удалена, а слой гидрида циркония заменен свинцом; роль удаленных материалов в уменьшении потока тепловых нейтронов пренебрежимо мала – эпитепловые нейтроны, входящие в ткань, генерируют вблизи входа обратнорассеянные тепловые нейтроны, интенсивность которых значительно превышает поток тепловых нейтронов из канала; – комбинированная проточная мишень была развернута соосно оси вывода пучка нейтронов и заключена в сферический вольфрамовый корпус, заполненный галлием. Эта мера позволила улучшить теплосъем, увеличить генерацию нейтронов и уменьшить выход «вредного» тормозного излучения.

Качество пучка для НЗТ

Качество пучка для H3T описывается характеристиками «in air» и «in phantom» [4]. Функционалы «in air» характеризуют поле излучений на выходе пучка без облучаемого фантома и упрощают задачу выбора оптимальных конфигурации и состава материалов блока вывода (без трудоемких расчетов функционалов «in phantom»). Предполагается, что если характеристики пучка «в воздухе» удовлетворяют конкретным критериям, выработанным мировым сообществом, то следует ожидать, что и функционалы «в фантоме» также будут удовлетворять требованиям H3T.

		$\Phi_{\text{tot}},$ cm ⁻² c ⁻¹ , 10 ⁹	$\Phi_{epi}/\Phi_{tot},$ %	$\Phi_{\textit{fast}}/\Phi_{\textit{tot}},$ %	$\Phi_{therm}/\Phi_{tot},$ %	E [⊕] _{aver,} МэВ	
Значения, желательные для НЗТ		≥ 1	~ 100	$\rightarrow 0$	$\rightarrow 0$	-	
FCB MIT		4.2	Данные отсутствуют				
MAPC		1.24	81.6	13.4	5.0	0.0337	
TAPIRO		1.07	73.6	6.5	20.0	0.00857	
Фото- нейтроны	«лучшая» версия [4]	18.5	74.9	25.1	0.014	0.0345	
	данная работа	27.8	73.3	21.6	5.11	0.0325	

Таблица 1 Плотность потока, спектральные характеристики и средняя энергия нейтронов на выходе эталонного, существующего и проектируемого пучков реакторов в сравнении с характеристиками пучков фотонейтронов

Таблица 2

НЗТ-характеристики на выходе реакторных и фотоядерных пучков: плотность потока эпитепловых нейтронов, «отравление» пучка гаммаизлучением и быстрыми нейтронами, направленность

		$\Phi_{\it epi}, \ { m cm^{-2}c^{-1},\ 10^9}$	<i>D_γ /Ф_{ері},</i> сГр∙см², 10 ^{–11}	<i>D_{fast} /Ф_{ері},</i> сГр∙см², 10 ^{–11}	<i>Ј_{ері} /Ф_{ері}</i> («ток-к-потоку»)
Значения, желательные для НЗТ		≥ 1	< 2–5	< 2–5	≥ 0.7
FCB MIT		?	1.3	4.3	0.8
MAPC		1.01	5.38	11.8	0.8
TAPIRO		0.788	6.77	8.49	0.8
Фото- нейтроны	«лучшая» версия [4]	13.9	0.0407	15.9	0.8
	данная работа	20.4	0.0262	13.4	0.8

Для сопоставления с рассчитываемыми пучками из мишени электронного ускорителя используются характеристики нейтронных пучков существующих и проектируемого реакторов:

 – пучок FCB MIT, который является «эталонным» для H3T (измерения [9], в настоящее время выведен из эксплуатации);

 – пучок эпитепловой колонны быстрого реактора TAPIRO [10], предназначенный для применения в H3T (расчет подтвержден измерениями; пучок выведен из эксплуатации); – пучок специализированного медицинского реактора МАРС (расчет [11]).

Базовые значения характеристик «в воздухе» для сравниваемых пучков приведены в табл. 1. Для фотонейтронов представлены данные по «лучшей» версии [4] и обновленной версии блока выведения (см. рис. 2, справа). Собственно критерии H3T даны в табл. 2. Из приведенных данных следует, что по критериям «в воздухе» (или «для свободного пучка») предлагаемый фотонейтронный пучок не уступает и даже частично превосходит реакторные пучки для H3T. Этот вывод подтверждается рис. 3, на котором представлены спектральные характеристики нейтронов на выходе пучка.

Рис. 3. Спектры нейтронов на выходе пучка для НЗТ

ГЕНЕРАЦИЯ РАДИОИЗОТОПОВ

Модель 1 (простейшая)

Для производства радиоизотопов по первой модели в (п, γ)-реакции конический модератор из дифторида свинца был заменен тяжелой водой (см. рис. 2). Общая конфигурация блока вывода не изменяется, предполагается облучать образцы на выходе канала. Оказалось, что существенной термализации пучка при такой глубине замедлителя (~ 0.5 м) добиться не удалось: при Φ_{tot} =3.10·10¹⁰ см⁻²с⁻¹ плотность потока тепловых нейтронов на выходе всего Φ_{th} =1.24·10¹⁰ см⁻²с⁻¹. При этом в непосредственной близости к мишени плотность потока тепловых нейтронов достигает величины ~ 2.5·10¹⁰. При сопоставлении с плотностью потока тепловых нейтронов в активной зоне реактора становится ясной бесперспективность первой модели для производства радиоизотопов.

Модель 2 (мишень с подкритическим бустером)

На рисунке 4 представлена модель, состоящая из цилиндрического бака с тяжелой водой. В центре бака находится мишень, а на периферии – подкритическая сборка $k_{eff} \leq 0.90$ (сборки с такой подкритичностью не требуют наличия СУЗ при работе). Сборка состоит из укороченных твэлов реактора БН-600, охлаждаемых тяжелой водой. Замедлителем является также D_2O . В результате расчета получено достаточно выровненное поле нейтронов внутри бака. Максимальные значения плотности потока нейтронов $\Phi_{tot} = 6.19 \cdot 10^{11}$ см²с⁻¹ в непосредственной близости к мишени, максимум плотности потока тепловых нейтронов Φ_{th} =3.09·10¹¹ см⁻²с⁻¹ отстоит от мишени примерно на 21 см. Плотность потока нейтронов возросла более чем на порядок по сравнению с результатами, полученными для первой модели. Возможно, в каких-то условиях производство радиоизотопов в реакции (n, γ) по модели 2 целесообразно, но конкурировать с реакторным производством не может.

Рис. 4. Радиальное (1) и осевое (2) сечения модели 2; 3 – фрагмент радиального участка с подкритической сборкой (размеры в см)

Модель 3 ((ү, n)-реакции)

Оказалось, что это самая перспективная модель, поскольку выход тормозного излучения из мишени достаточно велик. Исследованные цилиндрические мишени были оптимизированы на максимальный выход тормозного излучения при падении пучка электронов радиусом 0.5 см на торец цилиндра (табл. 3, рис. 5).

ларактеристики мишени для производства радиоизотопов по модели					
Материал мишени	TI	Pb	Bi	238U	Pb + Bi (45% +55%)
<i>R</i> , см	1.0	0.75	0.75	0.50	0.75
Н, см	1.0	0.75	1.0	1.0	1.5
Плотность, <u>г</u> /см ³	11.843	11.342	9.79	19.05	10.6
Точка плавления, °С	304	324	271	1133	124
Выход тормозного излучения, с-1	1.29·10 ¹⁷	1.32·10 ¹⁷	1.34·10 ¹⁷	1.25·1017	1.33·10 ¹⁷
Средняя энергия, МэВ	14.7	15.9	15.6	15.5	15.7

Экстремумы в задачах оптимизации в данном случае достаточно пологи, поэтому шаг в размерах мишеней грубый (0.25 см). При выбранных параметрах пучка электронов выход тормозного излучения из оптимальных мишеней практически

Таблица 3

одинаков для всех тяжелых материалов. Средняя энергия тормозного излучения лежит в области гигантского дипольного резонанса вблизи энергии максимальных сечений вольфрама. По технологическим соображениям в качестве мишени предпочтительна эвтектика свинец-висмут; в данном случае этот сплав будет также и теплоносителем.

Оценим производство ⁹⁹Мо тормозным излучением в реакции ¹⁰⁰Мо (γ, n)⁹⁹Мо. Условная схема облучения представлена на рис. 5.

Рис. 5. Сечения сферической расчетной модели 3 производства ⁹⁹Мо; стрелка показывает направление электронного пучка (визуализация входного файла MCNP5)

Цилиндрическая свинцово-висмутовая мишень заключена в сферический слой исходного нуклида ¹⁰⁰Мо (см. рис. 5). Уравнение наработки ⁹⁹Мо можно записать так:

$$d\rho^{99}/dt = \sigma \Phi_0 \rho^{100} - \lambda \rho^{99},$$
 (1)

где ρ^{99}, ρ^{100} – ядерная плотность (10^{24} см $^{-3}$) нарабатываемого и материнского изотопа; $\sigma\Phi_0\rho^{100}$ – скорость (γ , п)-реакций, см $^{-3}c^{-1}$; σ , Φ_0 – групповые векторы сечения (γ , п)-реакции (σ) и плотности потока фотонов (см $^{-2}c^{-1}$) размерностью табличного представления сечения (индекс энергетической группы опущен); λ – постоянная распада, c^{-1} .

Интегрирование (1) в интервале времени облучения $[0, t_{irr}]$ с учетом начального условия $\rho^{99}(t=0) = 0$ дает плотность наработанных ядер $[cm^{-3}]$:

$$\rho^{99} = \sigma \Phi_0 \rho^{100} \left(1 - \exp(-\lambda t_{irr}) \right) / \lambda;$$
⁽²⁾

удельная активность [Бк·см⁻³] наработанного изотопа $A = \lambda \cdot \rho^{99}$; при этом

$$A = \sigma \Phi_0 \rho^{100} \left(1 - \exp(-\lambda t_{irr}) \right).$$
(3)

Сравним результаты с данными для фотоядерной реакции (γ, п) в [12] при производстве ⁹⁹Мо на ускорителе электронов мощностью 14 кВт с энергией 40 МэВ (т.е. при среднем токе 0.350 мА). Для высокообогащенного (96% ¹⁰⁰Мо) образца массой 14.4 г при 24-часовой экспозиции производится активность ~ 25 Ки или 1.74 Ки/г [12]. Наши данные для той же экспозиции – 1.78 кКи и 5.96 Ки/г при массе образца 311 г (рис. 6), среднем токе 4 мА [5] и ¹⁰⁰Мо 100%-го обогащения). К сожалению, конкретная геометрия облучения [12] недоступна. В [13] некоторая информация позволяет частично восстановить данные [11].

Радионуклиды, генерируемые по модели 3 в (γ, п)-реакции (в той же геометрии рис. 5 и в тех же условиях облучения), представлены в табл. 4.

Изотоп Tuz Полная активность, Ки Удельная активность Ки/г 1°C (графит) 20.39 мин 140 2.22 1°N (интрид бора) 9.965 мин 45.9 0.718 1°O (Ge1 ⁶ O) 122.24 с 104 1.17 1°E (Li ¹⁸ F) 109.77 мин 313 4.05 3°K (7.636 мин 139 5.50 4°Sc 3.97 ч 2250 25.7 4°G (7 42.3 мин 3030 11.6 6°Cu 9.673 мин 3030 11.6 6°Cu 9.673 мин 2030 9.97 6°Zn 244.06 суг 20.1 0.0962 6°Ga 6.7.71 мин 6140 35.4 7°Br 6.46 мин 1820 20.0 8°Br 17.68 мин 2480 27.3 9.67 мин 3030 11.6 6*Cu 9.67 мин 3030 11.6 6*Cu 9.67 мин 3030 11.6 9.67 мин 30.9							
Позитронные излучатели 1°C (графит) 20.39 мин 140 2.22 1°N (интри бора) 9.955 мин 45.9 0.718 1°SO (Be ^{1S} O) 122.24 с 104 1.17 1°B (Li ¹⁰ F) 109.77 мин 313 4.05 3°B K 7.636 мин 139 5.50 4°Ti 184.8 мин 3310 24.9 4°SC r 42.3 мин 3550 16.9 6°C U 9.673 мин 2030 11.6 6°C U 9.673 мин 2030 9.97 6°Z n 38.47 мин 2090 9.97 6°Z n 28.46 сут 20.1 0.0962 6°Ga 67.71 мин 6140 35.4 7°B r 64.40 сут 20.0 27.3 Диагностические радиоизотопы 5°C r 27.7025 сут 208 0.984 5°H n 312.12 сут 9.15 0.0433 6°C u 9.673 мин 3030 11.6 6°C u 9.673	Изотоп	T _{1/2}	Полная активность, Ки	Удельная активность Ки/г			
¹¹ С (графит) 20.39 мин 140 2.22 ¹³ N (нигтрид бора) 9.965 мин 45.9 0.718 ¹⁵ O (BeiSO) 122.24 с 104 1.17 ¹⁶ F (Ll ¹⁸ F) 109.77 мин 313 4.05 ³⁸ K 7.636 мин 139 5.50 ⁴⁴ Sc 3.97 ч 2250 25.7 ⁴⁴ TI 184.8 мин 3310 24.9 ⁴⁶ Cr 42.3 мин 3550 16.9 ⁶² Cu 9.673 мин 3030 11.6 ⁶² Cu 12.700 ч 4240 16.2 ⁶³ Zn 38.47 мин 2090 9.97 ⁶³ Zn 244.06 cyr 20.1 0.0982 ⁶⁸ Ga 67.71 мин 6140 35.4 ⁷⁷ Br 6.46 мин 1820 20.0 ⁸⁰ Ga 17.70 ч 208 0.984 ⁵⁴ Mn 312.12 сyr 9.15 0.0433 ⁶⁴ Cu 12.700 ч 4240 16.2 ⁷⁴ As 17.77 cyr 22		Поз	итронные излучатели				
¹⁵ N (нитряд бора) 9.965 мин 45.9 0.718 ¹⁵ D (Ве ¹⁵ O) 122.24 с 104 1.17 ¹⁶ F (Lil ¹⁸ F) 19.77 мин 313 4.05 ³⁸ K 7.636 мин 139 5.50 ⁴⁴ Sc 3.97 ч 2250 25.7 ⁴⁶ T1 184.8 мин 3310 24.9 ⁴⁶ Cr 42.3 мин 3550 16.9 ⁶² Cu 9.673 мин 3030 11.6 ⁶⁴ Cr 12.700 ч 4240 16.2 ⁶⁴ Ca 12.700 ч 4240 16.2 ⁶⁴ Ca 12.700 ч 4240 0.997 ⁶⁵ Zn 244.06 cyr 20.1 0.0962 ⁶⁶ Ga 67.71 мин 1820 20.0 ⁶⁸ Ga 67.71 мин 1820 20.0 ⁶⁸ Ga 67.71 мин 1820 20.0 ⁶⁸ Ga 67.71 мин 1820 20.0 ⁶¹ Cu 27.05 cyr 20.8 0.984 ⁵⁴ Mn 312.12 cyr 9.15 </td <td>¹¹С (графит)</td> <td>20.39 мин</td> <td>140</td> <td>2.22</td>	¹¹ С (графит)	20.39 мин	140	2.22			
150 (Ве150) 122.24 с 104 1.17 18F (L18F) 109.77 мин 313 4.05 38/K 7.636 мин 139 5.50 44Sc 3.97 ч 2250 25.7 44T1 184.8 мин 3310 24.9 4%Cr 42.3 мин 3550 16.9 6%Cu 9.673 мин 3030 11.6 64Cu 12.700 ч 4240 16.2 657n 244.06 сут 20.1 0.0962 68Ga 67.71 мин 6140 35.4 78Br 6.46 мин 1820 20.0 80Br 17.68 мин 2480 27.3 Диагностические радиоизотопы 51Cr 27.7025 сут 208 0.984 54Mn 312.12 сут 9.15 0.0433 62Cu 9.673 мин 3030 11.6 64Cu 12.700 ч 4240 16.2 74As 17.77 сут 220 1.31 73Se 7.15 ч 3960 28.2 655r <td>¹³N (нитрид бора)</td> <td>9.965 мин</td> <td>45.9</td> <td>0.718</td>	¹³ N (нитрид бора)	9.965 мин	45.9	0.718			
1%F (L1%F) 109.77 мин 313 4.05 3%K 7.636 мин 139 5.50 44Sc 3.97 ч 2250 25.7 44Sr 184.8 мин 3310 24.9 4%Cr 42.3 мин 3550 16.9 6%Cu 9.673 мин 3030 11.6 6*Cu 12.700 ч 4240 16.2 6*Zn 38.47 мин 2090 9.97 6*Zn 244.06 cyr 20.1 0.0962 6*Ga 67.71 мин 6140 35.4 7*Br 6.46 мин 1820 20.0 **Or 27.3 Диатностические радиоизотопы 5*1Cr 27.7025 сут 208 0.984 5*4Mn 312.12 сут 9.15 0.0433 6*2Cu 9.673 мин 3030 11.6 6*4Cu 12.700 ч 4240 16.2 7*4As 17.77 сут 220 1.31 7*8e 7.15 ч 3960 28.2 *	15O (Be15O)	122.24 c	104	1.17			
38K 7.636 мин 139 5.50 44Sc 3.97 ч 2250 25.7 45Ti 184.8 мин 3310 24.9 4%Cr 42.3 мин 3550 16.9 6%Cu 9.673 мин 3030 11.6 6%Cu 12.700 ч 4240 16.2 6%Zn 38.47 мин 2000 9.97 6%Zn 38.47 мин 20.0 9.97 6%Zn 28.47 мин 6140 35.4 7%Br 6.46 мин 1820 20.0 6%Ga 67.71 мин 6140 35.4 7%Br 6.46 мин 1820 20.0 6%Ca 9.673 мин 3030 11.6 6%Cu 9.673 мин 3030 11.6 777025 cyr	¹⁸ F (Li ¹⁸ F)	109.77 мин	313	4.05			
44Sc 3.97 ч 2250 25.7 4 ⁴ Ti 184.8 мин 3310 24.9 4 ⁴ Cr 42.3 мин 3550 16.9 6 ⁴⁷ Cu 9.673 мин 3030 11.6 6 ⁴⁷ Cu 12.700 ч 4240 16.2 6 ⁴⁷ Cu 13.47 мин 6140 35.4 7 ⁷⁸ Br 6.46 мин 1820 20.0 ⁸⁰ DF 17.76 мин 6140 35.4 ⁷⁷⁸ Br 6.46 мин 1820 20.0 ⁸¹ Cr 27.7025 сут 208 0.984 ⁵⁴ Mn 312.12 сут 9.15 0.0433 ⁶² Cu 9.673 мин 3030 11.6 ⁶⁴ Cu 12.700 ч 4240 16.2 ⁷⁴ As 17.77 сут 220 1.31 ⁷³ Se 7.15 ч 3960 28.2 <	³⁸ K	7.636 мин	139	5.50			
4*Ti 184.8 мин 3310 24.9 4*Cr 42.3 мин 3550 16.9 6*2Cu 9.673 мин 3030 11.6 6*4Cu 12.700 ч 4240 16.2 6*3Zn 38.47 мин 2090 9.97 6*5Zn 244.06 сут 20.1 0.0962 6*Ga 67.71 мин 6140 35.4 7*BF 6.46 мин 1820 20.0 **OBF 17.68 мин 2480 27.3 Диагностические радиоизотопы 5*1Cr 27.7025 сут 20.8 0.984 5*4Mn 312.12 сут 9.15 0.0433 6*2Cu 9.673 мин 3030 11.6 6*4Cu 12.700 ч 4240 16.2 7*4s 17.77 сут 220 1.31 7*3Se 7.15 ч 3960 28.2 *55r 64.84 сут 20.6 0.277 9*7Ru 2.9 сут 2620 7.21 1*21*Te 19.16	⁴⁴ Sc	3.97 ч	2250	25.7			
4%Cr 42.3 мин 3550 16.9 6%Cu 9.673 мин 3030 11.6 6%Cu 12.700 ч 4240 16.2 6%T 38.47 мин 2090 9.97 6%Zn 38.47 мин 2090 9.97 6%Zn 244.06 сут 20.1 ** 0.0962 6%Ga 67.71 мин 6140 35.4 7* 7*Br 6.46 мин 1820 20.0 20.0 8*0Br 17.68 мин 2480 27.3 20.4 5*1Cr 27.7025 сут 208 0.984 35.4 5*4Mn 312.12 сут 9.15 0.0433 36.4 6*4Cu 12.700 ч 4240 16.2 7* 7*As 17.77 сут 220 1.31 7* 7*Bc 7.15 ч 3960 28.2 3* **Sr 64.8 сут 20.6 0.277 9* 9* 9.63 64.9 сут 10.5 0.0453 <	⁴⁵ Ti	184.8 мин	3310	24.9			
6²Сu 9.673 мин 3030 11.6 6²Сu 12.700 ч 4240 16.2 6³Zn 38.47 мин 2090 9.97 65Zn 244.06 сут 20.1 0.0962 68Ga 67.71 мин 6140 35.4 78Br 6.46 мин 1820 20.0 80Br 17.68 мин 2480 27.3 Диагностические радиоизотопы 51Cr 27.7025 сут 208 0.984 54Mn 312.12 сут 9.15 0.0433 6²Cu 9.673 мин 3030 11.6 6²Cu 9.673 мин 3030 11.6 6²Cu 12.700 ч 4240 16.2 7²As 17.77 сут 220 1.31 7³Se 7.15 ч 3960 28.2 85Sr 64.84 сут 20.6 0.277 9²Ru 2.9 сут 2620 7.21 121Te 19.16 сут 123 0.672 139Ce 13.764 сут	⁴⁹ Cr	42.3 мин	3550	16.9			
64Cu 12.700 ч 4240 16.2 63Zn 38.47 мин 2090 9.97 65Zn 244.06 сут 20.1 " 0.0962 68Ga 67.71 мин 6140 35.4 78Br 6.46 мин 1820 20.0 80Br 17.68 мин 2480 27.3 Диагностические радиоизотопы 51Cr 27.7025 сут 208 0.984 54Mn 312.12 сут 9.15 0.0433 62Cu 9.673 мин 3030 11.6 64Cu 12.700 ч 4240 16.2 74As 17.77 сут 220 1.31 73Se 7.15 ч 3960 28.2 85Sr 64.84 сут 20.6 0.277 97Ru 2.9 сут 2620 7.21 121Te 19.16 сут 30.9 0.156 140Pr 3.39 мин 3950 19.9 153Cd 240.4 сут 10.5 0.0453 167Dy	⁶² Cu	9.673 мин	3030	11.6			
63Zn 38.47 мин 2090 9.97 65Zn 244.06 сут 20.1 0.0962 68Ga 67.71 мин 6140 35.4 78Br 6.46 мин 1820 20.0 80Br 17.68 мин 2480 27.3 Диагностические радиоизотопы 51Cr 27.7025 сут 208 0.984 54Mn 312.12 сут 9.15 0.0433 6 ² Cu 9.673 мин 3030 11.6 6 ⁴ Cu 12.700 ч 4240 16.2 7 ⁴ As 17.77 сут 220 1.31 7 ³ Se 7.15 ч 3960 28.2 ⁶⁶ Sr 64.84 сут 20.6 0.277 ⁹⁷ Ru 2.9 сут 2620 7.21 ¹²¹ Te 19.16 сут 123 0.672 138Ce 137.64 сут 30.9 0.156 ¹⁴⁰ Pr 3.39 мин 3950 19.9 ¹⁵³ Gd 240.4 сут 10.5 0.0453 ¹⁶⁷ Dy	⁶⁴ Cu	12.700 ч	4240	16.2			
65Zn 244.06 сут 20.1 0.0962 68Ga 67.71 мин 6140 35.4 78Br 6.46 мин 1820 20.0 89Br 17.68 мин 2480 27.3 Диагностические радиоизотопы 51Cr 27.7025 сут 208 0.984 54Mn 312.12 сут 9.15 0.0433 62Cu 9.673 мин 3030 11.6 64Cu 12.700 ч 4240 16.2 74As 17.77 сут 220 1.31 73Se 7.15 ч 3960 28.2 85Sr 64.84 сут 20.6 0.277 97Ru 2.9 сут 2620 7.21 121Te 19.16 сут 123 0.672 138Ce 137.64 сут 30.9 0.156 140Pr 3.39 мин 3950 19.9 163Gd 240.4 сут 10.5 0.0453 167Dy 8.14 ч 6680 26.6 1689rb 32.026 сут<	⁶³ Zn	38.47 мин	2090	9.97			
68Ga 67.71 мин 6140 35.4 ⁷⁸ Br 6.46 мин 1820 20.0 ⁸⁰ Br 17.68 мин 2480 27.3 Диагностические радиоизотопы ⁵¹ Cr 27.7025 сут 208 0.984 ⁵⁴ Mn 312.12 сут 9.15 0.0433 ⁶² Cu 9.673 мин 3030 11.6 ⁶⁴ Cu 12.700 ч 4240 16.2 ⁷⁴ As 17.77 сут 220 1.31 ⁷³ Se 7.15 ч 3960 28.2 ⁸⁵ Sr 64.84 сут 20.6 0.277 ⁹⁷ Ru 2.9 сут 2620 7.21 ¹²¹ Te 19.16 сут 123 0.672 ¹³³ Ce 137.64 сут 30.9 0.156 ¹⁴⁰ Pr 3.39 мин 3950 19.9 ¹⁴⁵ Gd 240.4 сут 10.5 0.0453 ¹⁶⁷ Dy 8.14 ч 6680 26.6 ¹⁶⁸ Fr 10.36 ч 5980 22.5 ¹⁶⁸	⁶⁵ Zn	244.06 сут	20.1	0.0962			
74Вг 6.46 мин 1820 20.0 ®0Вг 17.68 мин 2480 27.3 Диагностические радиоизотопы 51°Cr 27.7025 сут 208 0.984 54Мп 312.12 сут 9.15 0.0433 62°Cu 9.673 мин 3030 11.6 64Cu 12.700 ч 4240 16.2 74As 17.77 сут 220 1.31 73Se 7.15 ч 3960 28.2 85°Sr 64.84 сут 20.6 0.277 97Ru 2.9 сут 2620 7.21 123 0.672 138°Ce 137.64 сут 30.9 0.156 140°Pr 3.39 мин 3950 19.9 155°Cd 240.4 сут 10.5 0.0453 157°Dy 8.14 ч 6680 26.6 165°Er 10.36 ч 5980 22.5 166°Yb 32.026 сут 105 0.515 203Hg 46.612 сут 106 0.266 22.5 166°Yb 32.026 сут 11.9 0.0911 97°Ru <td>⁶⁸Ga</td> <td>67.71 мин</td> <td>6140</td> <td>35.4</td>	⁶⁸ Ga	67.71 мин	6140	35.4			
80Br 17.68 мин 2480 27.3 Диагностические радиоизотопы 51Cr 27.7025 сут 208 0.984 54Mn 312.12 сут 9.15 0.0433 62Cu 9.673 мин 3030 11.6 64Cu 12.700 ч 4240 16.2 74As 17.77 сут 220 1.31 73Se 7.15 ч 3960 28.2 65Sr 64.84 сут 20.6 0.277 97Ru 2.9 сут 2620 7.21 121Te 19.16 сут 123 0.672 138Ce 137.64 сут 30.9 0.156 140Pr 3.39 мин 3950 19.9 155Gd 240.4 сут 10.5 0.0453 16*Pt 3.2026 сут 105 0.515 203Hg 46.612 сут 106 0.266 777 97Ru 2.9 сут 2620 7.21 103Pd 16.991 сут 126 0.359 16%Gd <td< td=""><td>⁷⁸Br</td><td>6.46 мин</td><td>1820</td><td>20.0</td></td<>	⁷⁸ Br	6.46 мин	1820	20.0			
Диагностические радиоизотопы 51°Cr 27.7025 сут 208 0.984 54Mn 312.12 сут 9.15 0.0433 62Cu 9.673 мин 3030 11.6 64Cu 12.700 ч 4240 16.2 74As 17.77 сут 220 1.31 73Se 7.15 ч 3960 28.2 85Sr 64.84 сут 20.6 0.277 97Ru 2.9 сут 2620 7.21 121Te 19.16 сут 123 0.672 133Ce 137.64 сут 30.9 0.156 140Pr 3.39 мин 3950 19.9 153Gd 240.4 сут 10.5 0.0453 157Dy 8.14 ч 6680 26.6 165Er 10.36 ч 5980 22.5 169Yb 32.026 сут 105 0.515 203Hg 46.612 сут 11.9 0.0911 97Ru 2.9 сут 2620 7.21 169Yb 32.026 сут	⁸⁰ Br	17.68 мин	2480	27.3			
51Cr 27.7025 сут 208 0.984 54Mn 312.12 сут 9.15 0.0433 62Cu 9.673 мин 3030 11.6 64Cu 12.700 ч 4240 16.2 74As 17.77 сут 220 1.31 73Se 7.15 ч 3960 28.2 85Sr 64.84 сут 20.6 0.277 97Ru 2.9 сут 2620 7.21 121Te 19.16 сут 123 0.672 139Ce 137.64 сут 30.9 0.156 140Pr 3.39 мин 3950 19.9 153Gd 240.4 сут 10.5 0.0453 157Dy 8.14 ч 6680 22.6 168Er 10.36 ч 5980 22.5 1689Yb 32.026 сут 105 0.515 203Hg 46.612 сут 106 0.266 Радиоизотопы для терапии открытыми источниками 88Y 106.65 сут 11.9 0.0911 97Ru		Диагно	стические радиоизотопы				
54Mn 312.12 сут 9.15 0.0433 62Cu 9.673 мин 3030 11.6 64Cu 12.700 ч 4240 16.2 74As 17.77 сут 220 1.31 73Se 7.15 ч 3960 28.2 85Sr 64.84 сут 20.6 0.277 97Ru 2.9 сут 2620 7.21 121Te 19.16 сут 12.3 0.672 139Ce 137.64 сут 30.9 0.156 140Pr 3.39 мин 3950 19.9 153Gd 240.4 сут 10.5 0.0453 157Dy 8.14 ч 6680 26.6 168Er 10.36 ч 5980 22.5 169Yb 32.026 сут 10.5 0.515 203Hg 46.612 сут 106 0.266 Радиоизотопы для терапии открытыми источниками 88Y 106.65 сут 11.9 0.0911 97Ru 2.9 сут 2620 7.21 103Pd	⁵¹ Cr	27.7025 cvt	208	0.984			
62Cu 9.673 м/н 3030 11.6 64Cu 12.700 ч 4240 16.2 74As 17.77 сут 220 1.31 73Se 7.15 ч 3960 28.2 85Sr 64.84 сут 20.6 0.277 9''Ru 2.9 сут 2620 7.21 121Te 19.16 сут 123 0.672 139Ce 137.64 сут 30.9 0.156 140Pr 3.39 мин 3950 19.9 153Gd 240.4 сут 10.5 0.0453 157Dy 8.14 ч 6680 26.6 165Er 10.36 ч 5980 22.5 169Yb 32.026 сут 105 0.515 203Hg 46.612 сут 106 0.266 Радиоизотопы для терапии открытыми источниками 8*Y 106.65 сут 11.9 0.0911 9''Ru 2.9 сут 2620 7.21 103Pd 16.991 сут 126 0.359 153Sm 46.50 ч 487 <t< td=""><td>⁵⁴Mn</td><td>312.12 сут</td><td>9.15</td><td>0.0433</td></t<>	⁵⁴ Mn	312.12 сут	9.15	0.0433			
васси 12.700 ч 4240 16.2 74As 17.77 сут 220 1.31 73Se 7.15 ч 3960 28.2 85Sr 64.84 сут 20.6 0.277 9''Ru 2.9 сут 2620 7.21 121Te 19.16 сут 123 0.672 139Ce 137.64 сут 30.9 0.156 140Pr 3.39 мин 3950 19.9 153Gd 240.4 сут 10.5 0.0453 157Dy 8.14 ч 6680 26.6 165Fr 10.36 ч 5980 22.5 169Yb 32.026 сут 105 0.515 203Hg 46.612 сут 106 0.266 Радиоизотопы для терапии открытыми источниками 88Y 106.65 сут 11.9 0.0911 9''Ru 2.9 сут 2620 7.21 103Pd 16.991 сут 126 0.359 153Sm 46.50 ч 487 2.21 159Gd	62Cu	9.673 мин	3030	11.6			
74As 17.77 сут 220 1.31 73Se 7.15 ч 3960 28.2 85Sr 64.84 сут 20.6 0.277 97Ru 2.9 сут 2620 7.21 121Te 19.16 сут 123 0.672 139Ce 137.64 сут 30.9 0.156 140Pr 3.39 мин 3950 19.9 153Gd 240.4 сут 10.5 0.0453 157Dy 8.14 ч 6680 26.6 165Er 10.36 ч 5980 22.5 169Yb 32.026 сут 105 0.515 203Hg 46.612 сут 11.9 0.0911 97Ru 2.9 сут 2620 7.21 103Pd 16.991 сут 126 0.359 153Sm 46.50 ч 487 2.21 169Er 9.40 сут 314 1.18 169Er 9.40 сут 314 1.18 19EGd 18.5 сут 3330 14.4 169Er	⁶⁴ Cu	12.700 ч	4240	16.2			
73Se 7.15 ч 3960 28.2 85Sr 64.84 сут 20.6 0.277 97Ru 2.9 сут 2620 7.21 121Te 19.16 сут 123 0.672 139Ce 137.64 сут 30.9 0.156 140Pr 3.39 мин 3950 19.9 153Gd 240.4 сут 10.5 0.0453 167Dy 8.14 ч 6680 26.6 165Er 10.36 ч 5980 22.5 169Yb 32.026 сут 105 0.515 203Hg 46.612 сут 106 0.266 Радиоизотопы для терапии открытыми источниками ®Y 106.65 сут 11.9 0.0911 97Ru 2.9 сут 2620 7.21 103Pd 16.991 сут 126 0.359 153Sm 46.50 ч 487 2.21 159Gd 18.5 сут 3330 14.4 169Er 9.40 сут 314 1.18 19ER <td< td=""><td>⁷⁴As</td><td>17.77 сут</td><td>220</td><td>1.31</td></td<>	⁷⁴ As	17.77 сут	220	1.31			
85Sr 64.84 сут 20.6 0.277 97Ru 2.9 сут 2620 7.21 121Te 19.16 сут 123 0.672 133Ce 137.64 сут 30.9 0.156 140Pr 3.39 мин 3950 19.9 153Gd 240.4 сут 10.5 0.0453 157Dy 8.14 ч 6680 26.6 165Er 10.36 ч 5980 22.5 169Yb 32.026 сут 105 0.515 203Hg 46.612 сут 106 0.266 Радиоизотопы для терапии открытыми источниками 88Y 106.65 сут 11.9 0.0911 97Ru 2.9 сут 2620 7.21 103Pd 16.991 сут 126 0.359 153Sm 46.50 ч 487 2.21 159Gd 18.5 сут 3330 14.4 1689Er 9.40 сут 314 1.18 192Ir 73.827 сут 4870 7.34 <td colspan="9</td</td> <td>⁷³Se</td> <td>7.15 ч</td> <td>3960</td> <td>28.2</td>	⁷³ Se	7.15 ч	3960	28.2			
97Ru 2.9 сут 2620 7.21 121Te 19.16 сут 123 0.672 139Ce 137.64 сут 30.9 0.156 140Pr 3.39 мин 3950 19.9 153Gd 240.4 сут 10.5 0.0453 167Dy 8.14 ч 6680 26.6 165Er 10.36 ч 5980 22.5 169Yb 32.026 сут 105 0.515 203Hg 46.612 сут 106 0.266 Радиоизотопы для терапии открытыми источниками 88Y 106.65 сут 11.9 0.0911 97Ru 2.9 сут 2620 7.21 103Pd 16.991 сут 126 0.359 153Sm 46.50 ч 487 2.21 159Gd 18.5 сут 3330 14.4 169Er 9.40 сут 314 1.18 192Ir 73.827 сут 4870 7.34 Радиоизотопы для медицинских генераторов 99Mo 65.94 ч	⁸⁵ Sr	64.84 сут	20.6	0.277			
121 Те 19.16 сут 123 0.672 139 Се 137.64 сут 30.9 0.156 140 Pr 3.39 мин 3950 19.9 153 Gd 240.4 сут 10.5 0.0453 167 Dy 8.14 ч 6680 26.6 165 Er 10.36 ч 5980 22.5 168 Fr 10.36 ч 50.5 0.515 203 Hg 46.612 сут 106 0.266 Радиоизотопы для терапии открытыми источниками 89 Y 106.65 сут 11.9 0.0911 103 Pd 16.991 сут 126 0.359 163 Sm 46.50 ч 487 2.21 159 Gd 18.5 сут 3330 14.4 168 Fe 3.7183 сут 5040 8.18	97Ru	2.9 cvt	2620	7.21			
13°Се 137.64 сут 30.9 0.156 14°Pr 3.39 мин 3950 19.9 15³Gd 240.4 сут 10.5 0.0453 15°Dy 8.14 ч 6680 26.6 16°Er 10.36 ч 5980 22.5 16°Pyb 32.026 сут 105 0.515 203Hg 46.612 сут 106 0.266 Радиоизотопы для терапии открытыми источниками ⁸⁸ Y 106.65 сут 11.9 0.0911 ⁹⁷ Ru 2.9 сут 2620 7.21 ¹⁰³ Pd 16.991 сут 126 0.359 1 ¹⁵³ Sm 46.50 ч 487 2.21 ¹⁵⁹ Gd 18.5 сут 3330 14.4 1 ¹⁶⁹ Er 9.40 сут 314 1.18 1 ¹⁸⁰ Re 3.7183 сут 5040 8.18	¹²¹ Te	19.16 cvt	123	0.672			
140 Pr 3.39 мин 3950 19.9 153 Gd 240.4 сут 10.5 0.0453 157 Dy 8.14 ч 6680 26.6 165 Er 10.36 ч 5980 22.5 169 Yb 32.026 сут 105 0.515 203 Hg 46.612 сут 106 0.266 Радиоизотопы для терапии открытыми источниками 88Y 106.65 сут 11.9 0.0911 97 Ru 2.9 сут 2620 7.21 103Pd 16.991 сут 126 0.359 153 Sm 46.50 ч 487 2.21 159Gd 18.5 сут 3330 14.4 169 Er 9.40 сут 314 1.18 186 192 Ir 7.3827 сут 4870 7.34 Радиоизотопы для медицинских генераторов 99 Mo 65.94 ч 1780 5.96 113 Sn 115.09 сут 45.4 0.0985 0.000251 0.00343 0.00343 1.9 сосе пися знерти си	¹³⁹ Ce	137.64 cvt	30.9	0.156			
153Gd 240.4 сут 10.5 0.0453 157Dy 8.14 ч 6680 26.6 165Er 10.36 ч 5980 22.5 169Yb 32.026 сут 105 0.515 203Hg 46.612 сут 106 0.266 Радиоизотопы для терапии открытыми источниками 88Y 106.65 сут 11.9 0.0911 97Ru 2.9 сут 2620 7.21 103Pd 16.991 сут 126 0.359 153Sm 46.50 ч 487 2.21 159Gd 18.5 сут 3330 14.4 169Er 9.40 сут 314 1.18 186Re 3.7183 сут 5040 8.18 192Ir 73.827 сут 4870 7.34 2.96 Радиоизотопы для медицинских генераторов 9.96 5.96 113Sn 115.09 сут 45.4 0.0985 Долгоживущие позитронные источники для космоса 150Eu 1) 1.35·10 ⁴ сут 0.0385 0.000251 152Eu 2) 4.94·10 ³ сут 0.528 0.00343 1)	¹⁴⁰ Pr	3.39 мин	3950	19.9			
157Dy 8.14 ч 6680 26.6 165Er 10.36 ч 5980 22.5 169Yb 32.026 сут 105 0.515 203Hg 46.612 сут 106 0.266 Радиоизотопы для терапии открытыми источниками 88Y 106.65 сут 11.9 0.0911 97Ru 2.9 сут 2620 7.21 103Pd 16.991 сут 126 0.359 153Sm 46.50 ч 487 2.21 159Gd 18.5 сут 3330 14.4 169Er 9.40 сут 314 1.18 1.8 188 192Ir 73.827 сут 4870 7.34 2.9 1.35.104 сут 0.0985 Радиоизотопы для медицинских генераторов 99Mo 65.94 ч 1780 5.96 113Sn 115.09 сут 45.4 0.0985 Долгоживущие позитронные источники для космоса 150Eu 1) 1.35.104 сут 0.0385 0.000251 152Eu 2) 4.94.103 сут 0.528 0.00343 1) – средняд амергида смергида смергида смер	¹⁵³ Gd	240.4 CVT	10.5	0.0453			
165 10.36 ч 5980 22.5 165 10.36 ч 5980 22.5 169 Yb 32.026 сут 105 0.515 203 Hg 46.612 сут 106 0.266 Радиоизотопы для терапии открытыми источниками 88Y 106.65 сут 11.9 0.0911 97 Ru 2.9 сут 2620 7.21 103 Pd 16.991 сут 126 0.359 153 Sm 46.50 ч 487 2.21 159 Gd 18.5 сут 3330 14.4 169 Er 9.40 сут 314 1.18 186 Re 3.7183 сут 5040 8.18 192 Ir 73.827 сут 4870 7.34 99 Mo 65.94 ч 1780 5.96 113 Sn 115.09 сут 45.4 0.0985 Долгоживущие позитронные источники для космоса 150 Eu 1) 1.35 · 10 ⁴ сут 0.0385 0.000251 152 Eu 2) 4.94 · 10 ³ сут 0.528 0.00343 0.00343 1) = слеания ачергия ачергия ачергия ачергия ачергия ачергия ачергия ачергия ачергия аче	157Dv	8 14 4	6680	26.6			
169 Yb 32.026 сут 105 0.515 203 Hg 46.612 сут 106 0.266 Радиоизотопы для терапии открытыми источниками ⁸⁸ Y 106.65 сут 11.9 0.0911 ⁹⁷ Ru 2.9 сут 2620 7.21 ¹⁰³ Pd 16.991 сут 126 0.359 ¹⁵³ Sm 46.50 ч 487 2.21 ¹⁵⁹ Gd 18.5 сут 3330 14.4 ¹⁶⁹ Er 9.40 сут 314 1.18 ¹⁸⁶ Re 3.7183 сут 5040 8.18 ¹⁹² Ir 73.827 сут 4870 7.34 Радиоизотопы для медицинских генераторов ⁹⁹ Mo 65.94 ч 1780 5.96 ¹¹³ Sn 115.09 сут 45.4 0.0985 Долгоживущие позитронные источники для космоса ¹⁵⁰ Eu ¹⁾ 1.35·10 ⁴ сут 0.528 0.000251 ¹⁵² Eu ²⁾ 4.94·10 ³ сут 0.528 0.00343	165Er	10.36 y	5980	22.5			
10 100 0.010 203Hg 46.612 сут 106 0.266 Радиоизотопы для терапии открытыми источниками 88Y 106.65 сут 11.9 0.0911 97Ru 2.9 сут 2620 7.21 103Pd 16.991 сут 126 0.359 153Sm 46.50 ч 487 2.21 159Gd 18.5 сут 3330 14.4 169Er 9.40 сут 314 1.18 186Re 3.7183 сут 5040 8.18 192Ir 73.827 сут 4870 7.34 Радиоизотопы для медицинских генераторов 99Mo 65.94 ч 1780 5.96 113Sn 115.09 сут 45.4 0.0985 Долгоживущие позитронные источники для космоса 150Eu 1) 1.35·10 ⁴ сут 0.0385 0.000251 152Eu 2) 4.94·10 ³ сут 0.528 0.00343 1) = сревняя знергия влергия слачарова (0.22 MaB) 2) = сревняя знергия слачарова (0.30 MaB)	169Yh	32.026 CVT	105	0.515			
Радиоизотопы для терапии открытыми источниками ⁸⁸ Y 106.65 сут 11.9 0.0911 ⁹⁷ Ru 2.9 сут 2620 7.21 ¹⁰³ Pd 16.991 сут 126 0.359 ¹⁵³ Sm 46.50 ч 487 2.21 ¹⁵⁹ Gd 18.5 сут 3330 14.4 ¹⁶⁹ Er 9.40 сут 314 1.18 ¹⁸⁶ Re 3.7183 сут 5040 8.18 ¹⁹² Ir 73.827 сут 4870 7.34 Радиоизотопы для медицинских генераторов ⁹⁹ Mo 65.94 ч 1780 5.96 ¹¹¹ Sn 115.09 сут 45.4 0.0985 Долгоживущие позитронные источники для космоса 150Eu ¹⁾ 1.35·10 ⁴ сут 0.528 0.000251 ¹⁵² Eu ²⁾ 4.94·10 ³ сут 0.528 0.00343 0.00343 0.22 MaB ⁺²⁾	²⁰³ Ha	46 612 CVT	106	0.266			
вау 106.65 сут 11.9 0.0911 97Ru 2.9 сут 2620 7.21 103Pd 16.991 сут 126 0.359 153Sm 46.50 ч 487 2.21 159Gd 18.5 сут 3330 14.4 169Er 9.40 сут 314 1.18 186Re 3.7183 сут 5040 8.18 192Ir 73.827 сут 4870 7.34 Радиоизотопы для медицинских генераторов 99Mo 65.94 ч 1780 5.96 1113Sn 115.09 сут 45.4 0.0985 Долгоживущие позитронные источники для космоса 150Eu 1) 1.35·10 ⁴ сут 0.0385 0.000251 152Eu 2) 4.94·10 ³ сут 0.528 0.00343 1) = сперияд зиергид позитронов 0.22 MaB ¹² = сперияд зиергид позитронов 0.30 MaB 10	Pa	лиоизотопы лг		точниками			
97Ru 2.9 сут 2620 7.21 103Pd 16.991 сут 126 0.359 153Sm 46.50 ч 487 2.21 159Gd 18.5 сут 3330 14.4 169Er 9.40 сут 314 1.18 186Re 3.7183 сут 5040 8.18 192Ir 73.827 сут 4870 7.34 Радиоизотопы для медицинских генераторов 99Mo 65.94 ч 1780 5.96 113Sn 115.09 сут 45.4 0.0985 0.000251 Долгоживущие позитронные источники для космоса 150Eu 1) 1.35·10 ⁴ сут 0.0385 0.000251 152Eu 2) 4.94·10 ³ сут 0.528 0.00343 0.00343	88Y	106 65 cvt	11.9	0.0911			
103Pd 16.991 сут 126 1.11 103Pd 16.991 сут 126 0.359 153Sm 46.50 ч 487 2.21 159Gd 18.5 сут 3330 14.4 169Er 9.40 сут 314 1.18 186Re 3.7183 сут 5040 8.18 192Ir 73.827 сут 4870 7.34 Радиоизотопы для медицинских генераторов 99Mo 65.94 ч 1780 5.96 113Sn 115.09 сут 45.4 0.0985 0.000251 Долгоживущие позитронные источники для космоса 150Eu 1) 1.35·10 ⁴ сут 0.0385 0.000251 152Eu 2) 4.94·10 ³ сут 0.528 0.00343 0.00343	97Ru	2.9 CVT	2620	7.21			
153 Sm 46.50 ч 487 2.21 159 Gd 18.5 сут 3330 14.4 169 Er 9.40 сут 314 1.18 186 Re 3.7183 сут 5040 8.18 192 Ir 73.827 сут 4870 7.34 Радиоизотопы для медицинских генераторов 99 Mo 65.94 ч 1780 5.96 113 Sn 115.09 сут 45.4 0.0985 0.000251 Долгоживущие позитронные источники для космоса 150 Eu 1) 1.35·10 ⁴ сут 0.528 0.000251 152 Eu 2) 4.94·10 ³ сут 0.528 0.00343 0.00343	103Pd	16.991 CVT	126	0,359			
159 Gd 18.5 сут 3330 14.4 169 Er 9.40 сут 314 1.18 186 Re 3.7183 сут 5040 8.18 192 Ir 73.827 сут 4870 7.34 Радиоизотопы для медицинских генераторов 99 Mo 65.94 ч 1780 5.96 113 Sn 115.09 сут 45.4 0.0985 0.000251 Долгоживущие позитронные источники для космоса 150 Ец 1) 1.35·10 ⁴ сут 0.0385 0.000251 152 Eu 2) 4.94·10 ³ сут 0.528 0.00343 0.00343	153Sm	46.50 y	487	2.21			
163 стр. 0000 14.4 169 ст 9.40 сут 314 1.18 186 Re 3.7183 сут 5040 8.18 192 г 73.827 сут 4870 7.34 Радиоизотопы для медицинских генераторов 99 Мо 65.94 ч 1780 5.96 113 Sn 115.09 сут 45.4 0.0985 0.000251 Долгоживущие позитронные источники для космоса 150 сут 0.0385 0.000251 150 си 1) 1.35·10 ⁴ сут 0.528 0.00343 1) – средняя знергия позитронов 0.22 МаВ ⁺² – средняя знергия позитронов 0.30 МаВ 0.30 МаВ	159Gd	18.5 cvr	3330	14.4			
186Re 3.7183 сут 5040 8.18 192Ir 73.827 сут 4870 7.34 Радиоизотопы для медицинских генераторов 99Mo 65.94 ч 1780 5.96 113Sn 115.09 сут 45.4 0.0985 Долгоживущие позитронные источники для космоса 150Eu 1) 1.35·104 сут 0.0385 0.000251 152Eu 2) 4.94·103 сут 0.528 0.00343 0.00343 1) – средняя анергия позитронов 0.22 MaB ^{+ 2} – средняя анергия позитронов 0.30 MaB	169 F r	9.40 cvr	314	1 18			
100 0.1100 0.110 192 r 73.827 сут 4870 7.34 Радиоизотопы для медицинских генераторов 99Mo 65.94 ч 1780 5.96 113Sn 115.09 сут 45.4 0.0985 Долгоживущие позитронные источники для космоса 150Eu 1) 1.35·104 сут 0.0385 0.000251 152Eu 2) 4.94·103 сут 0.528 0.00343 0.00343	186Ro	3 7183 OVT	5040	8 18			
Радиоизотопы для медицинских генераторов ⁹⁹ Mo 65.94 ч 1780 5.96 ¹¹³ Sn 115.09 сут 45.4 0.0985 Долгоживущие позитронные источники для космоса ¹⁵⁰ Eu ¹) 1.35·10 ⁴ сут 0.0385 0.000251 ¹⁵² Eu ²) 4.94·10 ³ сут 0.528 0.00343	192 r	73 827 CVT	4870	7 34			
99Мо 65.94 ч 1780 5.96 113Sn 115.09 сут 45.4 0.0985 Долгоживущие позитронные источники для космоса 150Eu 1) 1.35·10 ⁴ сут 0.0385 0.000251 150Eu 1) 1.35·10 ⁴ сут 0.528 0.00343 1) – средняя знергия позитронов 0.22 MaB ⁺² – средняя знергия позитронов 0.30 MaB							
113Sn 115.09 сут 45.4 0.0985 Долгоживущие позитронные источники для космоса 100 0.00251 150Eu 1) 1.35·10 ⁴ сут 0.0385 0.000251 152Eu 2) 4.94·10 ³ сут 0.528 0.00343 1) – средняя знергия позитронов 0.22 MaB ⁺² – средняя знергия позитронов 0.30 MaB 0.30 MaB	99Mo	65 94 u	1780	5 96			
Долгоживущие позитронные источники для космоса 150Eu 1) 1.35·10 ⁴ сут 0.0385 0.000251 152Eu 2) 4.94·10 ³ сут 0.528 0.00343	113 Sn	115.09 ovr	45.4	0.00			
150Eu 1) 1.35·10 ⁴ сут 0.0385 0.000251 152Eu 2) 4.94·10 ³ сут 0.528 0.00343 1) – средная знергия позитронов 0.22 MaR ⁻² – средная знергия позитронов 0.30 MaR							
100 го сут 0.0000 0.000001 152Eu 2) 4.94·103 сут 0.528 0.00343 1) – средная знергия позитронов 0.22 MaR·2) – средная знергия позитронов 0.30 MaR	150Eu 1) 1 25-104 олд 0.0295 0.00054						
	152 = 1 2)	4 94.10 ³ cvr	0.000	0.000231			
			2 MaR ²) - средная знергия				

Радиоизотопы, полученные при расчете по модели З

149

Таблица 4

ЗАКЛЮЧЕНИЕ

Компактность современных мощных ускорителей и хорошая управляемость электронным пучком позволяют обеспечить бинарное применение тормозного излучения, генерируемого в области гигантского дипольного резонанса, для производства нейтронов и радиоизотопов. Предлагаемая схема генерации имеет очевидные преимущества перед реакторной генерацией. В первую очередь это экологическая чистота – активность теплоносителя спадает быстро, продуктов деления в установке нет, а активация оборудования локализована. Кроме того, степень радиационной и ядерной безопасности неизмеримо выше, чем при реакторной генерации. Безопасность, а также относительно небольшие габариты и масса установки позволяют размещать ее непосредственно в клинике. Плотность потока эпитепловых нейтронов (требуемая для НЗТ) на выходе пучка, по крайней мере, на порядок больше плотности потока нейтронов существующих и проектируемых реакторных пучков. Диверсификация при альтернативной генерации медицинских радиоизотопов на той же установке улучшает ее экономику и расширяет возможности. Особенно показательна высокая эффективность генерации ⁹⁹Мо, предшественника основного диагностического радиоизотопа ^{99m}Tc (~ 80% всех процедур).

Литература

1. *Кураченко Ю.А., Вознесенский Н.К., Говердовский А.А., Рачков В.И*. Новый интенсивный источник нейтронов для медицинских приложений // Медицинская физика. – 2012. – №2. – С. 29-38.

2. *Кураченко Ю.А*. Фотонейтроны для нейтронозахватной терапии // Известия вузов. Ядерная энергетика. – 2014. – №4. – С. 41-51.

3. *Кураченко Ю.А., Забарянский Ю.Г., Онищук Е.А*. Оптимизация мишени для производства фотонейтронов. // Известия вузов. Ядерная энергетика. – 2016. – №3. – С. 150-162.

4. *Кураченко Ю.А., Забарянский Ю.Г., Онищук Е.А*. Применение фотонейтронов для лучевой терапии. // Медицинская радиология и радиационная безопасность. – 2017. – №3. – С. 33-42.

5. High Power Linacs for Isotope Production. MEVEX: The accelerator technology company. Электронный pecypc: http://www.mevex.com/Brochures/Brochure_High_Energy.pdf (дата доступа 17.05.2019).

6. *Authors: X-5 Monte Carlo Team*. MCNP – A General Monte Carlo N-Particle Transport Code, Ver. 5. Volume I: Overview and Theory. – LA-UR-03-1987. – 2003. – 484 p.

7. Koning A., Hilaire S., Goriely S. TALYS-1.9. A nuclear reaction program. – 2017. – 554 р. Электронный pecypc: ftp://ftp.nrg.eu/pub/www/talys/talys1.9.pdf (дата доступа 17.05.2019).

8. Что такое Star-CD®? Обзор программы. Электронный pecypc: http://www.procae.ru/ articles/star-cd/76-about-star-cd.html (дата доступа 17.05.2019).

9. *Riley K.J., Binns P.J., Harling O.K.* Performance characteristics of the MIT fission converter based epithermal neutron beam. // Phys. Med. Biol. – 2003. – Vol.48. – PP. 943-958.

10. *Agosteo S., Foglio Para A., Gambarini G. et al.* Design of neutron beams for boron neutron capture therapy in a fast reactor. In: IAEA-TECDOC-1223. – 2001 – PP. 1-302.

11. *Кураченко Ю.А*. Реакторные пучки для лучевой терапии: критерии качества и расчетные технологии // Медицинская физика. – 2008. – №2 (38). – С. 20-28.

12. *Ralph G.B., Jerry D.C., David A.P. et al.* A System of ^{99m}Tc production based on distributed electron accelerators and thermal separation // Nucl. Technology. – 1999. – Vol.126. – PP.102-121.

13 Купленников Э.Л., Довбня А.Н., Цымбал В.А. и др. Оценка наработки ⁹⁹Мо и ⁹⁹^mTc на ⁹Be(d,n)-генераторе ХФТИ // ВАНТ. 2012. – №4 – С. 155-159. Электронный ресурс:

https://vant.kipt.kharkov.ua/ARTICLE/VANT_2012_4/article_2012_4_155.pdf (дата доступа 17.05.2019).

Поступила в редакцию 20.05. 2019 г.

Авторы

<u>Онищук</u> Елена Александровна, аспирантка МИФИ E-mail: elenaonischuk@yandex.ru

<u>Кураченко</u> Юрий Александрович, д-р физ.-мат. наук E-mail: ykurachenko@mail.ru

<u>Матусевич</u> Евгений Сергеевич, профессор, д-р физ.-мат. наук E-mail: ematus@obninsk.ru

UDC 615.849.1:536.2.023:519.688

POWERFUL ELECTRON ACCELERATOR FOR THE PRODUCTION OF NEUTRONS AND RADIOISOTOPES

Onischuk E.A.*,**, Kurachenko Yu.A.***, Matusevich E.S.*

* Obninsk Institute for Nuclear Power Engineering, NRNU «MEPhI»

1 Studgorodok, Obninsk, Kaluga reg., 249033 Russia

** Rosatom Technical Academy

21 Kurchatov street, Obninsk, Kaluga reg., 249031 Russia

*** Russian Institute of Radiology and Agroecology, RIRAE

109th km of Kiev highway, Obninsk, Kaluga reg., 249032 Russia

ABSTRACT

The purpose of the work is to study the possible use of existing high-power electron accelerators for neutron therapy and the production of radioisotopes. Calculations were performed for both applications and the results were normalized to the characteristics of the existing MEVEX accelerator (average electron current 4 mA at a monoenergetic electron beam of 35 MeV). A unifying problem for the applications is the task of cooling the target: at a beam energy ~ 140 kW, almost half of this energy is released directly into the target. Therefore, a liquid heavy metal was chosen as a target in order to combine the high quality of thermohydraulics with the maximum performance of both bremsstrahlung radiation and photoneutrons. The targets were optimized using precision codes for radiation transfer and thermal-hydraulic applications. Optimization was also carried out on the installation as a whole: (1) on the composition of the material and the configuration of the photoneutron removal unit for neutron capture therapy (NCT) and (2) on the bremsstrahlung generation scheme for producing radioisotopes. The photoneutron unit provides an acceptable beam quality for NCT with a large neutron flux density at the output: ~ 2.10¹⁰ cm⁻²s⁻¹, which is an order of magnitude higher than the values at the output of existing and planned reactor beams. Such intensity at the beam output will make it possible to abandon fractionated irradiation in many cases. As for the production of radioisotopes, in the calculations for the (γ , n) reaction, 43 radionuclides in five groups were obtained. For example, using the Mo¹⁰⁰(γ , n)⁹⁹Mo reaction, it is possible to obtain the ⁹⁹Mo precursor of the main diagnostic isotope ^{99m}Tc with a specific activity of ~ 6 Ci/g and a total target activity of 1.8 kCi after irradiation for 24 h. The proposed schemes for generating and outputting photoneutrons and bremsstrahlung have a number of obvious advantages over traditional methods, including: (a) the use of electron accelerators for producing neutrons is much safer and cheaper than the use of reactor beams; (b) the accelerator with the target and the beam output unit with the necessary equipment and tooling can be easily placed in a

clinic; and (c) the proposed liquid gallium target for NCT, which also serves as a coolant, is an «environmentally friendly» material: its activation is relatively small and drops quickly (after about four days) to the background level.

Key words: electron accelerator, photoneutrons, neutron capture therapy, beam modernization, radioisotopes production, (γ , n) reaction, ¹⁰⁰Mo production, compact clinical installation.

REFERENCES

1. Kurachenko Yu.A., Voznesensky N.K., Goverdovsky A.A., Rachkov V.I. New intensive neutron source for medical application. *Meditsinskaya Fizika*, 2012; v. 38, no. 2, pp. 29-38. (in Russian).

2. Kurachenko Yu.A. Photoneutrons for neutron capture therapy. *Izvestia Vysshikh Uchebnykh Zawedeniy*. Yadernaya Energetika, 2014, no. 4, pp. 41-51 (in Russian).

3. Kurachenko Yu.A., Zabaryansky Yu.G., Onischuk H.A. Optimization of the target for photoneutron production. *Izvestiya vuzov. Yadernaya Energetika*, 2016, no 3, pp. 150-162. (in Russian).

4. Kurachenko Yu.A., Zabaryansky Yu.G., Onischuk H.A. Photoneutrons application for radiation therapy. *Medicinskaya Radiologiya i Radiatsionnaya Bezopasnost'*, 2017, v. 62, no. 3, pp. 33-42 (in Russian).

5. High Power Linacs for Isotope Production. MEVEX: The accelerator technology company. Available at: http://www.mevex.com/Brochures/Brochure_High_Energy.pdf (accessed May 17, 2019)

6. Authors: X-5 Monte Carlo Team. *MCNP – A General Monte Carlo N-Particle Transport Code*, Ver. 5. Vol. I: Overview and Theory. LA-UR-03-1987, 2003. 484 p.

7. Koning A., Hilaire S., Goriely S. TALYS-1.9. A nuclear reaction program. Available at: ftp://ftp.nrg.eu/pub/www/talys/talys1.9.pdf. 2017 (accessed May 17, 2019).

8. What is STAR-CD®? Code Review. Available at: http://www.procae.ru/articles/star-cd/76-about-star-cd.html (accessed May 17, 2019).

9. Riley K.J., Binns P.J., Harling O.K. Performance characteristics of the MIT fission converter based epithermal neutron beam. *Phys. Med. Biol*, 2003, v. 48, pp.943-958.

10. Agosteo S., Foglio Para A., Gambarini G., L. Casalini, K.W. Burn, R. Tinti, G. Rosi, A. Festinesi, E. Nava. Design of neutron beams for boron neutron capture therapy in a fast reactor. In: IAEA-TECDOC-1223, 2001, pp. 116-125. Available at: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1223_prn.pdf (accessed May 17, 2019).

11. Kurachenko Yu.A. Reactor beams for radiation therapy: quality criteria and computational technologies. *Meditsinskaya fizika*, 2008, v. 38, no. 2, pp. 20-28 (in Russian).

12. Bennett Ralph G., Christian Jerry D., Petti David A., Terry William K., Grover S. Blaine. A System of ^{99m}Tc Production based on Distributed Electron Accelerators and Thermal Separation. *Nucl. Technology*, 1999, v. 126, pp. 102-121. Available at: https://doi.org/10.13182/NT99-A2961 (accessed May 17, 2019).

13. Kuplennikov E.L., Dovbnya A.N., Tsymbal V.A., Kandybej S.S., Stojanov A.F. Estimation of the ⁹⁹Mo and ^{99m}Tc production on the KhFTI ⁹Be(d,n)-generator. *VANT*. 2012, v. 80, no. 4, pp. 155-159. Available at: https://vant.kipt.kharkov.ua/ARTICLE/VANT_2012_4/ article_2012_4_155.pdf (accessed May 17, 2019) (in Russian).

Authors

<u>Onischuk</u> Elena Aleksandrovna, PhD Student, Specialist in International Activities in Vocational Training E-mail: elenaonischuk@yandex.ru

<u>Kurachenko</u> Yury Aleksandrovich, Chief Researcher, Dr. Sci. (Phys.-Math.), E-mail: ykurachenko@mail.ru

<u>Matusevich</u> Evgeny Sergeevich, Professor, Dr. Sc. (Phys-Math) E-mail: ematus@obninsk.ru