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A conventional approach for estimating the yield strength consists in
calculation of a critical shear stress for bowing out of gliding dislocation
segments between barriers. According to Orovan theory, the critical shear stress
T, is determined by the average distance [ between obstacles: t, = 0Gb / [, where
o is the constant; G is the shear module; b is the Burgers vector.The
superposition of various barriers is taken into account as add1t1ve of different
contributions 1, =1, + 7, + T, + ..., 0r as t* = 1° + 7,7 + 7,7 + ... . Both
procedures have yet no theoretical ground On'the basis of the maximum shear
stress concept, the critical shear stress T, in polycrystals is related to the tensile
yield strength 6 as follows: ¢, = 21, (Tresca criterion). On the basis of the
effective stress concept this relat10nsh1p has well known form: 6 = (\/3)
(Mlses criterion). Sometimes the Taylor criterion is used, according’to which
=3.067,.
In the present paper an another method of calculating the yield strength of
metals and alloys is proposed. The energy condition of plasticity (Mises
criterion) is used. According to this condition the plastic flow of a material
occurs when the deformation potential energy which is proportional to the
square of the effective stress 6, reaches a certain limiting value proportional
to the square of the yield stress 6. under uniaxial tension.
In this paper, it is assumed that for the onset of plastic flow the specific
potential energy of deformation caused by external forces should exceed the
limiting value equal to the potential energy of deformation created by all
microstructure defects (dislocations, dislocation loops, voids, precipitates, etc.).
Such an approach allows to calculate barrier strengthening coefficients o. Also,
according to this approach the total yield stress is equal to the square root of
the sum of yield stress squares for different types of crystal defects («geometric
superposition of strengthening barriers contributions»).

Key words: irradiation hardening, yield strength, metals, alloys, dislocations, voids,
precipitates.

INTRODUCTION
A common approach for the explanation of the yield strength change in irradiated
materials (irradiation hardening) is based on the model of hardening by barriers for gliding
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dislocations. According to such an approach the motion of dislocations under an applied
shear stress Ty is impeded by localized obstacles randomly distributed in the glide plane.
To initiate a macroscopic plastic strain, dislocations should overcome these obstacles.
This overcoming can be realized by bowing out of dislocations between the barriers
(Orowan mechanism) or by cutting them. The stress 14 is determined by the mean distance
[y between two neighbor obstacles of the same type: 14 = Ay/lx, where Ay = oyGb for the
Orowan mechanism (o is the constant, G is the shear modulus, and b is the Burgers vector)
and Ay = Fi(T)/bli for the cutting mechanism [1 - 4]. The constants oy are usually
determined by fitting experimental data on the yield strength. The superposition of various
barriers is taken into account as additive of different contributions tx=1; + T, + T3+ ..., 0or
as T2 = T12 + T,2 + 132 + ... [4 — 6]. Both procedures have yet no theoretical ground. On
the basis of the maximum shear stress concept, the critical shear stress 4 in polycrystals is
related to the tensile yield strength o, as follows: 6, = 274 (Tresca criterion). On the basis
of the effective stress concept this relationship has well known form: 6, = 3/2. 14 (Mises
criterion). Sometimes the Taylor criterion is used, according to which 6, = 3.06 - 7.

In the present work a new approach for calculating the yield strength is developed. The
yield strength of a material is considered to be the square root of the squared effective stress
Of; Created by all barriers in an arbitrary point of a material. As is known, the tensile yield
strength equals the effective stress. Such an approach allows to obtain explicit expressions
for hardening constants. Besides, in this approach 6,% = 6,12 + 6,,% + 6,32 + ..., if lattice
defects of different type i (i=1, 2, 3, ...) are present in the microstructure.

ENERGY CONDITION OF PLASTICITY

According to the energy condition (criterion) of plasticity proposed by Mises (see, for
example, [7]), the plastic deformation occurs when the effective stress (“stress intensity”)
reaches some value oy, which depends only on the material properties. For isotropic
materials, this energy condition consists in the requirement that the square of the effective
stress is to be invariant (Mises law): 62,5 = 3I,, where I = s;s; / 2 is the second invariant
of the deviatoric part of the stress tensor si = Gjx — &k (011 + G2 + G33)/3 (8i is the unit
tensor). The effective stress square can be expressed as follows:

O = [(O11 = G22)? + (O22 = G33)% + (033 = 011)% + 6(G12° + G23° +031%)] /2. (1)

Asis known, the energy condition of plasticity is derived from the following requirement:
the plastic deformation occurs when the potential energy of deformation which is
proportional to 62,5 reaches some limiting value, so that 62, =62, .

From the existing theoretical models and experiments it follows that o, is determined
by the microstructure of a material. It is natural to assume that the square of the yield stress
0,° = 6% is determined by elastic stress fields created at an arbitrary point of the crystal
by all lattice defects. As a first approximation, it will be assumed that each crystal defect
creates a potential energy of deformation independently of other defects, that is, the square
of the effective stress is equal to the sum of the squares of the effective stresses created by
lattice defects. As shown below, such an approach allows to derive contributions of various
types of crystal defects (dislocations, voids and gas bubbles, precipitate particles, etc.) to
the yield strength and substantiate the method of their superposition.

As it will be shown below, well known contributions to hardening of crystal defects such
as dislocations, voids, gas bubbles, dislocation loops, precipitates, etc. can be derived if to
suppose that at each point of a material the square of the yield strength is determined by
the expression (1) averaged over the spatial distribution of these defects, the stress tensor
is determined by elastic strain fields caused by the defects. The approach consists in
calculation of 62, at an arbitrary point of the matrix taking into account elastic stresses
produced by all components of microstructure.
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HARDENING BY DISLOCATIONS

Screw dislocations. Let’s consider a straight screw dislocation, which line coincides with
the coordinate axis z. According to Ref. [8], in cylindrical coordinate system all components
of the stress tensor at an arbitrary point around of the screw dislocation are equal to zero,
excluding the component 6, which is equal to

Gz = Gb/(2mr), (2)

where G is the shear modulus of the matrix, b is the Burgers vector. By writing eq. (1) in the
cylindrical coordinates (by replacing 1, 2, 3 — z r, ¢) and substituting eq. (2) in eg. (1),
one obtains the following expression for 6% :
0% = 302, = 3(Gb)?/(2mr)2. (3)
In order to take into account the contribution of all screw dislocations, the right part of
eqg. (3) should be multiplied by p’s2nrdr, where p’s is the dislocation density measured by
the etching method. The value of p’s is linearly related to total density of screw dislocations
ps measured using an electronic microscope: p’s = ps/ a, where a = 2. Integrating over r
from ry (rois the radius of the dislocation core) to maximum distance R, which can be taken
mean grain or crystal size, one obtains:

o, =a,6b.\/p,, (4)
where
ogs = [(3/2ma)ln(Rs/ro) 12, (5)
Edge dislocations. Let’s take into account the contribution of straight edge dislocations
to the square of effective stress using well known result of the theory of elasticity, according
to which for an edge dislocation only the following stress tensor components are non-zero
[3]:

O =0gp=-Dsing/r, Grp=Dcosov/r, (6)
where D = Gb./2m(1-v), v is the Poisson ratio, b, is the Burgers vector of the edge
dislocation.

By averaging o2.¢ over angle ¢ and over distance r of edge dislocations from a given
point, one obtains:
Ge = adeGbe pe ’ (7)

where o = [(47/a)n(Re/r0)1V2/[2m(1-V)].

The coefficients oy and o depend slightly on material parameters and dislocation
densities.

It is easy to calculate the contribution of both screw and edge dislocations to 62, if
spatial distributions of these dislocations are random. Apparently, in this case the value of
o2 is equal to

G4 = G\/azds bzs Ps + azde bze Pe- (8)

In the case, when 0?4 b% = 024 b%, the yield strength is determined in fact, by the
square root of the total dislocation density pg= ps + pe-

STRENGTHENING BY VOIDS

According to the theory of elasticity (see, for example, [9]) stresses around of a spherical
cavity of radius R with the internal pressure p, in spherical coordinates have the following

form:
oy =-p(R/r)>,  Oeo=0Cqge=(p/2)(R/T)’, (9)
where ris the distance from the void center up to a given point. Non-diagonal components
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of the stress tensor are equal to zero. In the case of a gas-filled cavity, the pressure p is

equal to
p=pg - (2¥/R), (10)

where pg is the gas pressure in the cavity, yis the surface energy.
Writing eq. (1) in spherical coordinates (1, 2, 3 — r, 6, @), one can be easily convinced
that at the distance r from the cavity center the square of effective stress is given by

Ol = (9/4) p* (R/1)°. (11)

In order to take into account the contribution of all gas-filled cavities, is necessary

multiply eq. (11) by f, (R) dR 4mr?dr, where f, (R) is the cavity size distribution function

and to integrate over r from R to e, and then over R from 0 to . As a result one obtains
that

O a =37 R¥(p, 21 / RV £, (RIR. (12)

It is seen from the expression (12), that in the case when the gas pressure in the cavities
is counterbalanced by surface tension (cavities are equilibrium gas bubbles), such cavities
do not contribute to the effective stress.

For voids (pgy = 0) from eq. (12) it follows that

G, =, Gb\N, <d, >. (13)

where N, and <d,> are the void number density and the mean void diameter, respectively,
and
o, = (61)2(y/Gb) = 4.34(y/Gb). (14)

Apparently, the surface energy yis the most uncertain value because even in pure metals
it can strongly vary due to radiation-induced segregation of impurity atoms on the void
surface, especially of interstitial impurities, such as carbon. For y magnitudes in the range
of 1 - 2J/m?and Gb magnitudes ranging from 20 J/m? (Ni, o-Fe) to 40 J/m? (W) one finds,
that magnitudes of barrier constant for voids fall in the interval from 0.11 to 0.43. It
should be pointed out that in the framework of the traditional approach, strengthening
by voids is determined by the energy per unit length of dislocation and by the mean
distance of (N, <d,>)~"/2 between two neighbor voids on the dislocation line. In such an
approach, eq. (14) can be derived, if to consider that the dislocation segment does not bow
between two neighbor voids and that the elastic force with which these voids act on the
segment, arises due to increase of the void surface after a shift of upper part of the voids
(above a slip plane) with respect to their bottom part, i.e. due to origin of ledges on void
surface.

HARDENING BY PRECIPITATES

According to Ref. [10] in an infinite isotropic matrix containing an isotropic misfitting
spherical sphere (the elastic model of a precipitate) the displacements are radial, i.e. the
displacement vector u has the form u = u,r/r, where ris the distance from precipitate center
and 3 2

u =g’ /r\, rzr, (15)
u, =er, r<r,
where r, is the radius of the precipitate, € is a parameter describing the strength of the
elastic strain field. For a coherent precipitate € is related to & = AV/(3V), the misfit between
the unstrained lattices of precipitate and matrix (AV/Vis the fractional difference in atomic
volume between precipitate and matrix material) [5] by

€=Gp(1+vp)0/ [Gp(1 +vp) +2G(1 - 2v)], (16)
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where Gy, n, are the shear modulus and Poisson ratio of precipitate material, G is the shear
modulus of the matrix. If G, = G and v, = 1/3, € = (2/3)3. For elastic moduli usually found
0.58<e<38[5].

From eq. (15) it follows, that the strain tensor components are equal to

B {—Zsr’f /r’, rzr;
m

€, rSrp,
3 3 .

e e U _Jen /r, r=r; (17)
00 Tee g, r<r;

€ =&, =&, =0.

The components of the stress tensor are linearly related to the strain tensor components.
Using the well known relations, one obtains that 6,9 = 6,y = Gg9 = 0 and

Grr=2G[(1-V)er+2veg]/(1-2V), (18a)
O = Ogo = 2G[(1 = V) €e9 + V (€ + €09) /(1 = 2V), (18b)

where v is the Poisson ratio of matrix.
The substitution of eq. (17) into (18a) and (18b) results in

- - —4Ger? /1, rxr;

T 2Geg(1+v) / (1-2v), r<r; (19)
__JeGer})r, rr;
000 = %0 =1 26e(14v) /(1-2v), r<r,.

Within coherent precipitate the effective stress is equal to zero. In matrix around the
precipitate the square of effective stress is given by

G2efs = (Gyr — Gop)? = 3662€21,5/15. (20)

To obtain the square of effective stress produced in an arbitrary point of a material by
all precipitates having the radius r,, let us assume that the spatial distribution of the
precipitates is uniform. Multiplying the right-hand side of eq. (20) by f,(r,)dr,x<4nN,rdr,
(fo(rp) is the distribution of precipitates on radii) and integrating over r from r, to infinity,
one obtains X L hm
G, =36G"¢ (?rp f(r,)dr,). (21)

Further, integrating the right hand side of eq. (21) over r, from zero to infinity and taking
square root of the result, one finally obtains

o, =6|s|G\/Z, (22)
where A
v =?an (), (23)

is the volume fraction of coherent precipitates, N, is the precipitate concentration, brackets
denote the mean value.

In Ref. [11] it was found, that precipitate-induced strengthening and hardening of a
series of model steels and commercial reactor pressure vessel steels vary according to the
square root of the volume fraction of precipitate. As it was pointed out in Ref. [11] current
models [12 — 14] of the hardening produced by irradiation-induced copper-rich precipitates
include such a dependence.

By assumption, stresses around of a spherical incoherent precipitate are determined by
the interfacial surface energy ¥y,. In this case inside and outside of the precipitate only
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diagonal components of stress tensor are non-zero. Moreover, inside of the particle the
diagonal components equal each to other and,. consequently, the effective stress vanishes.
Outside of the particle the stress field is similar to the field around of a void. Thus, the mean
effective stress in an arbitrary point can be described with expressions similar to egs. (13),
(14) (Orowan formula), if to replace N, — N, <d,> — <d,> (d, = 2r,) and Y = Yip:

o, =(32n/3)"*(y,, /Gb)-Gb /N, <d, >. (24)

STRENGTHENING BY DISLOCATION LOOPS

According to Refs. [15,16] in a cylindrical coordinate system r, z, @ the displacements
around of a circular interstitial loop of radius R and with the Burgers vector b, directed along
z-axis, in an infinite and elasticity isotropic medium are:

ur==[b/4(1 - V)][(1 - 2v),O(pL) - CLV(pL)], (25a)
uz = =[b/4(1 = v)][2(1 = v)LO(pC) + LI (pL)], (25b)
Uy =0, (25c¢)
where p=1/R, {=2/R (z>0).
L7 (pG) = [£73,(tp),(t)exp(—tC)dt, (26)

Jp is the nth-order Bessel function of the first kind.

Determining with the help of egs.(25a) - (25c) the components of strain tensor and using
the well known relationship between components of stress and strain tensors, one obtains,
that

on=A[-I™M + (1 - 2v)[O/p + LI,® - L1,V /p], (27a)
0z = A[-IM - CI?], (27b)
Goo = A[-(1 - 2v)[,O/p + LI,(V/p - 2vI) 1], (27¢)
O, =-AClh®),  Cy=0,=0, (27d)
where
A=Gb/[2R(1 - V)]. (28)

The expressions (27a) — (27d) allow to calculate the square of effective stress G, caused
by the loop of radius R at an arbitrary point of matrix. Introducing the loop size distribution
fi(R), so, that f; (R) dR is the concentration of loops having radius R, one obtains the square
of the effective stress produced by all loops:

O =4[ R°A° F(RYAR [ pdp [ dC (0,5 / AY =
0 0 0

_ nG’b?
2(1- V)

. . 0 (29)
[2RF(R)AR [ pdp [ d& (o, / AY -

Due to a complexity of the function (c./A)? no attempts were undertaken to calculate
integrals on p and { in eq. (29). However it is clear, that the main contribution to these
integrals will origin from zones adjacent to the dislocation loop core, because at large
distances r = R(p? + {?)"/2 from the loop the function o, /A behaves as 1/r3 [10], and,
hence, large distances bring a small contribution. In immediate loop proximity the effective
stress differs only slightly from the effective stress of a straight edge dislocation, and the
integrals on p and { diverge logarithmically. Taking the minimum distance from loop edge
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equal to the dislocation core radius ro, and the maximum distance equal to the loop radius,
one finds that the integral on p and £ will be proportional to In(R/ro). Since the logarithm
is the slight function of argument, when integrating on R it can be taken approximately as
In(<Riop>/r0), Where <Rjy0,> is the mean loop radius, and without a large error can be taken
out of the integral. Seemingly, the final result of calculations will be similar to eq. (6), where
the following replacements is made (pe/a) — 21<Rio0p>Nioop and In(Re/ro) — IN(<Rio0p>/10)-
In these approximations from eq. (29) it follows that
cSloop = aloopr <dloop>Nl

loop 7

(30)
where Nj,qp is the loop concentration, the constant oy, is close to oy in magnitude.

SUPERPOSITION OF VARIOUS LATTICE DEFECTS IN HARDENING

According to the approach proposed in this paper, if there are barriers of different types
in the material, the square of the effective stress will be equal to the sum of the squares of
effective stresses created by the various barriers, so that

2 2 2
Gy:\/cdisl +G,py 0, +een s (31)

In Ref. [16] it was shown, that Eq. (31) fits better experimental data on hardening
of niobium at low neutron irradiation doses as compared with the arithmetical sum of
different hardening increments. According to Ref. [17] fitting the temperature
dependence of hardening in molybdenum, niobium and their dilute alloys irradiated with
fast neutron fluences close to 10?2 n/cm?, is considerably improved if to use eq. (31)
instead of Oy = Ouisl + Ovoid + Ologp t+ - -+ +

CONCLUSIONS

A hypothesis, according to which the yield strength is determined by the square of
effective stress at an arbitrary point of a material created by all components of the
microstructure (by dislocations, voids, precipitate particles, dislocation loops etc.), allows
to derive analytically the hardening constants.

In the approach developed above the yield strength is equal to the root square of the
total squares of effective stress caused by different hardening mechanisms in the case, if
the spatial distributions of these barriers are random and independent.
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PEDEPAT

06wWwenpuUHATLIA NOAXOA NPU OLEHKE YNPOYHEHUS COCTOUT B BBIYMCIEHUN KPUTUYEC-
KOO CKa/iblBAKOLLErO HAMPSXKEHUSA NPU NPOAABIMBAHUM CErMEHTA CKONb3SALeN ANCIOKa-
LMW MeXAy ABYMSA OAHOTUNHbIMK Gapbepamu. CornacHo Teopun OpoBaHa, KpUTUYECKoe
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CABUIOBOE HaNpsXXeHWUe T, ONpefensieTcs CPeAHUM paccTosHUEM [ MeX Ay NpenaTcTBus-
Mu: T, = aGb/L (on — koHcTaHTa; G — mopynb casura; b — Bektop broprepca). Cynepno-
3ULMA Pa3NUYHbIX GapbepOB YYMTbIBAETCA IMGO NPOCTHIM CYMMUPOBAHUEM UX BKNAAOB
Ti(1=1,2,3,...) BKPUTUYECKOE CKANbIBAIOLLEE HAMPSKEHNE Ty =T1 + Tp + T3 + ..., IMOO
KaK Ty? = T12 + To2 + 13° + ... . 06a cnoco6a cyMMUPOBAHUA BKNAL0B HE UMEIOT O CUX
nop TeopeTnyeckoro 060cHoBaHMA. Ha 0CHOBE NpMHLMNA MAKCUMANbHOTO CABUIOBOrO
HanpseHus (Kputepuit Tpecka) Tx AA NOAUKPUCTANIMYECKUX 00pa3LL0B CBA3bIBAETCA
C NpefieNoM TeKy4eCTH B UCMbITAHUAX HA PaCcTAXEHWe G, COOTHOWeHneM Gy = 2T;. Ha
0CHOBE MOHATUA 3PPEKTUBHOIO HANPSKEHNUA (IHEPreTUYECKoe yCa0BMUE NAACTUYHOCTH)
3Ta CBA3b UMeeT BUJ Gy = (\/3)‘cy (kpuTepuit Museca). NHorpa ncnonb3yetcs Kputepuii
Teinopa, cornacHo Kotopomy 6, = 3.06-7.

Mpepnaraetcs fpyroi cnocob BelYMCNEHUs Npeaena TeKy4ecTu MeTanioB U cnna-
BOB. /icnonb30BaHO 3HEpreTMyeckoe ycnoBue niaacTMyHoCcTH (Kputepuit Museca), co-
rNacHO KOTOPOMY MNACTUYECKOE TeYeHUEe MaTepuana NPOUCXOLUT TOFLa, KOTAA YAeNb-
Has NoTeHUManbHas 3Heprus OpMOU3MEHEHUS, NPONOPLMOHANbHAA KBagpaTy 3ddek-
TUBHOTO HaNPAXEHNA g, LOCTUTAET HEKOTOPOro NPeenbHOro ANA AaHHOro MaTe-
puana 3HayeHus, NpONOPLUOHANLHOTO KBaApaTy Npefena TeKy4yectu G, npu ofHOOC-
HOM PacTsXeHUU.

MpeanonaraeTcs, YTo AN Hayana NNaCTUYECKOro TeYeHus 06ycioBNeHHas BHEWHN-
MU CMNaMU yaenbHas NnoTeHUManbHas IHeprus hopMoU3MEHEHUS [LOMIKHA NPEBbLICUTD
npegenbHoe 3HayeHue, paBHOe YAeNbHOW NOTEHLMANbHON 3Heprun hopMOnU3MEHEH NS,
CO3/aHHOI BceMm fiecheKTaMn MUKPOCTPYKTYPbI (AMCNOKALMAMM, AUCTOKALMOHHBIMY NeT-
NAMU, NOpaMu, BbIfeNeHAMU 1 Ap.). Takoi nofxon no3BonseT BbYUCAUTL KO3 ULm-
eHTbl 6apbepHoro ynpoyHeHus o.. CornacHo npegnaraemomy noaxony, npeaen Tekyyec-
TW paBeH KOPHIO KBAAPaTHOMY M3 CYMMbl KBaApaToB BKNAAOB BCeX TUNOB fedeKTOB
(«reomeTpnyeckoe» cyMMUpOBaHUE BKNAJ0B).

KnioueBble cnoBa: pagnalLMoOHHOE YIPOYHEHUE, NPeAeN TEKYYECTH, MeTabl U cnna-
Bbl, LUCIIOKAL MM, NOPbI, YACTULbI HA30BbIX BbIAENEHWIA.
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