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A conventional approach for estimating the yield strength consists in
calculation of a critical shear stress for bowing out of gliding dislocation
segments between barriers. According to Orovan theory, the critical shear stress
τk is determined by the average distance l between obstacles: τk = αGb / l, where
α is the constant; G is the shear module; b is the Burgers vector.The
superposition of various barriers is taken into account as additive of different
contributions τk = τ1 + τ2 + τ3 + …, or as τk

2 = τ1
2 + τ2

2 + τ3
2 + … . Both

procedures have yet no theoretical ground.  On the basis of the maximum shear
stress concept, the critical shear stress τk  in polycrystals  is related to the tensile
yield strength σy as follows: σy = 2τk (Tresca criterion). On the basis of the
effective stress concept this relationship has well known form: σ

y
= (√3)τ

k
(Mises criterion). Sometimes the Taylor criterion is used, according to which
σy = 3.06τk.
In the present paper an another method of calculating the yield strength of
metals and alloys is proposed. The energy condition of plasticity (Mises
criterion) is used. According to this condition the plastic flow of a material
occurs when the deformation potential energy which is proportional to the
square of the effective stress σeff , reaches a certain limiting value proportional
to the square of the yield stress σy under uniaxial tension.
In this paper, it is assumed that for the onset of plastic flow the specific
potential energy of deformation caused by external forces should exceed the
limiting value equal to the potential energy of deformation created by all
microstructure defects (dislocations, dislocation loops, voids, precipitates, etc.).
Such an approach allows to calculate barrier strengthening coefficients α. Also,
according to this approach the total yield stress is equal to the square root of
the sum of yield stress squares for different types of crystal defects («geometric
superposition of strengthening barriers contributions»).

Key words: irradiation hardening, yield strength, metals, alloys, dislocations, voids,
precipitates.

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
A common approach for the explanation of the yield strength change in irradiated

materials (irradiation hardening) is based on the model of hardening by barriers for gliding
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dislocations. According to such an approach the motion of dislocations under an applied
shear stress τk is impeded by localized obstacles randomly distributed in the glide plane.
To initiate a macroscopic plastic strain, dislocations should overcome these obstacles.
This overcoming can be realized by bowing out of dislocations between the barriers
(Orowan mechanism) or by cutting them. The stress τk is determined by the mean distance
lk  between two neighbor obstacles of the same type: τk = Ak/lk, where Ak = αkGb for the
Orowan mechanism (αk is the constant, G is the shear modulus, and b is the Burgers vector)
and Ak = Fk(T)/blk for the cutting mechanism [1 – 4]. The constants αk are usually
determined by fitting experimental data on the yield strength. The superposition of various
barriers is taken into account as additive of different contributions τk = τ1 + τ2 + τ3 + …, or
as τk

2 = τ1
2 + τ2

2 + τ3
2 + … [4 – 6]. Both procedures have yet no theoretical ground. On

the basis of the maximum shear stress concept, the critical shear stress τk in polycrystals is
related to the tensile yield strength σy as follows: σy = 2τk (Tresca criterion). On the basis
of the effective stress concept this relationship has well known form: σy = 31/2 ⋅ τk (Mises
criterion). Sometimes the Taylor criterion is used, according to which σy = 3.06 ⋅ τk.

In the present work a new approach for calculating the yield strength is developed. The
yield strength of a material is considered to be the square root of the squared effective stress
σeff, created by all barriers in an arbitrary point of a material. As is known, the tensile yield
strength equals the effective stress.  Such an approach allows to obtain explicit expressions
for hardening constants. Besides, in this approach σy

2 = σy1
2 + σy2

2 + σy3 
2 + …, if lattice

defects of different type i (i = 1, 2, 3, ...) are present in the microstructure.

ENERGY CONDITION OF PLASTICITY
According to the energy condition (criterion) of plasticity proposed by Mises (see, for

example, [7]), the plastic deformation occurs when  the effective stress (“stress intensity”)
reaches some value σy, which depends only on the material properties. For isotropic
materials, this energy condition consists in the requirement that the square of the effective
stress is to be invariant (Mises law): σ2

eff  = 3I2, where I2 = sijsji / 2 is the second invariant
of the deviatoric part of the stress tensor sik = σik – δik (σ11 + σ22 + σ33)/3 (δik is the unit
tensor). The effective stress square can be expressed as follows:

σ2
eff  = [(σ11

 – σ22)2 + (σ22
 – σ33)2 + (σ33

 – σ11)2 + 6(σ12
2 + σ23

2 + σ31
2)] / 2.    (1)

As is known, the energy condition of plasticity is derived from the following requirement:
the plastic deformation occurs when the potential energy of deformation which is
proportional to σ2

eff  reaches some limiting value, so that σ2
eff = σ2

y .
From the existing theoretical models and experiments it follows that σy is determined

by the microstructure of a material. It is natural to assume that the square of the yield stress
σy

2 = σ2
eff is determined by elastic stress fields created at an arbitrary point of the crystal

by all lattice defects. As a first approximation, it will be assumed that each crystal defect
creates a potential energy of deformation independently of other defects, that is, the square
of the effective stress is equal to the sum of the squares of the effective stresses created by
lattice defects. As shown below, such an approach allows to derive contributions of various
types of crystal defects (dislocations, voids and gas bubbles, precipitate particles, etc.) to
the yield strength and substantiate the method of their superposition.

As it will be shown below, well known contributions to hardening of crystal defects such
as dislocations, voids, gas bubbles, dislocation loops, precipitates, etc. can be derived if to
suppose that at each point of a material the square of the yield strength is determined by
the expression (1) averaged over the spatial distribution of these defects, the stress tensor
is determined by elastic strain fields caused by the defects. The approach consists in
calculation of σ2

eff  at an arbitrary point of the matrix taking into account elastic stresses
produced by all components of microstructure.
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HARDENING BY DISLOCATIONS
Screw dislocations. Let’s consider a straight screw dislocation, which line coincides with

the coordinate axis z. According to Ref. [8], in cylindrical coordinate system all components
of the stress tensor at an arbitrary point around of the screw dislocation are equal to zero,
excluding the component σzϕ, which is equal to

σzϕ = Gb/(2πr),                                                 (2)

where G is the shear modulus of the matrix, b is the Burgers vector. By writing eq. (1) in the
cylindrical coordinates (by replacing 1, 2, 3 → z, r, ϕ) and substituting eq. (2) in eg. (1),
one obtains the following expression for σ2

eff :

σ2
eff = 3σ2

zϕ = 3(Gb)2/(2πr)2.                                       (3)

In order to take into account the contribution of all screw dislocations, the right part of
eq. (3) should be multiplied by ρ′s2πr dr, where ρ′s is the dislocation density measured by
the etching method. The value of ρ′s is linearly related to total density of screw dislocations
ρs, measured using an electronic microscope: ρ′s = ρs / a, where a ≈ 2. Integrating over r
from r0 (r0 is the radius of the dislocation core) to maximum distance Rs, which can be taken
mean grain or crystal size, one obtains:

 (4)

where
 αds = [(3/2πa)ln(Rs/r0)]1/2.                                       (5)

Edge dislocations. Let’s take into account the contribution of straight edge dislocations
to the square of effective stress using well known result of the theory of elasticity, according
to which for an edge dislocation only the following stress tensor components are non�zero
[3]:

σrr = σϕϕ = –D sin ϕ / r,          σrϕ = D cos ϕν / r,                         (6)

where D = Gbe/2π(1–ν), ν  is the Poisson ratio, be is the Burgers vector of the edge
dislocation.

By averaging σ2
eff  over angle ϕ and over distance r of edge dislocations from a given

point, one obtains:
 (7)

where αde = [(4π/a)ln(Re/r0)]1/2/[2π(1–ν)].
The coefficients αds and αde depend slightly on material parameters and dislocation

densities.
It is easy to calculate the contribution of both screw and edge dislocations to σ2

eff , if
spatial distributions of these dislocations are random. Apparently, in this case the value of
σ2

eff  is equal to
 (8)

In the case, when α2
ds b2

s ≈ α2
de b2

e , the yield strength is determined in fact, by the
square root of the total dislocation density ρd = ρs + ρe.

STRENGTHENING BY VOIDS
According to the theory of elasticity (see, for example, [9]) stresses around of a spherical

cavity of radius R with the internal pressure p, in spherical coordinates have the following
form:

σyy = –p(R/r)3,        σθθ = σϕϕ = (p/2)(R/r)3,                            (9)

where r is the distance from the void center up to a given point. Non�diagonal components

,s ds s sGbσ = α ρ

,e de e eGbσ = α ρ

2 2 2 2 .d s eds s de e
G b bσ = α ρ + α ρ
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of the stress tensor are equal to zero. In the case of a gas�filled cavity, the pressure p is
equal to

p = pg – (2γ/R),                                                (10)

where pg is the gas pressure in the cavity, γ is the surface energy.
Writing eq. (1) in spherical coordinates (1, 2, 3 → r, θ, ϕ), one can be easily convinced

that at the distance r from the cavity center the square of effective stress is given by

σ2
eff = (9/4) p2 (R/r)6.                                          (11)

In order to take into account the contribution of all gas�filled cavities, is necessary
multiply eq. (11) by fv (R) dR 4πr2dr, where fv (R) is the cavity size distribution function
and to integrate over r from R to ∞, and then over R from 0 to ∞. As a result one obtains
that

 (12)

It is seen from the expression (12), that in the case when the gas pressure in the cavities
is counterbalanced by surface tension (cavities are equilibrium gas bubbles), such cavities
do not contribute to the effective stress.

For voids (pg = 0) from eq. (12) it follows that

 (13)

where Nv and <dv> are the void number density and the mean void diameter, respectively,
and

αv = (6π)1/2(γ/Gb) = 4.34(γ/Gb).                                    (14)

Apparently, the surface energy γ is the most uncertain value because even in pure metals
it can strongly vary due to radiation�induced segregation of impurity atoms on the void
surface, especially of interstitial impurities, such as carbon. For γ magnitudes in the range
of 1 – 2 J/m2 and Gb magnitudes ranging from 20 J/m2 (Ni, α�Fe) to 40 J/m2 (W) one finds,
that magnitudes of barrier constant for voids fall in the interval from 0.11 to 0.43. It
should be pointed out that in the framework of the traditional approach, strengthening
by voids is determined by the energy per unit length of dislocation and by the mean
distance of (Nv <dv>)–1/2 between two neighbor voids on the dislocation line. In such an
approach, eq. (14) can be derived, if to consider that the dislocation segment does not bow
between two neighbor voids and that the elastic force with which these voids act on the
segment, arises due to increase of the void surface after a shift of upper part of the voids
(above a slip plane) with respect to their bottom part, i.e. due to origin of ledges on void
surface.

HARDENING BY PRECIPITATES
According to Ref. [10] in an infinite isotropic matrix containing an isotropic misfitting

spherical sphere (the elastic model of a precipitate) the displacements are radial, i.e. the
displacement vector u has the form u = ur r/r, where r is the distance from precipitate center
and

 (15)

where rp is the radius of the precipitate, ε  is a parameter describing the strength of the
elastic strain field. For a coherent precipitate ε is related to δ = ΔV/(3V), the misfit between
the unstrained lattices of precipitate and matrix (ΔV/V is the fractional difference in atomic
volume between precipitate and matrix material) [5] by

ε = Gp(1 + vp)δ / [Gp(1 + vp) + 2G(1 – 2vp)],                            (16)

2 3 2

0

3 ( 2 / ) ( ) .void g vR p R f R dR
∞

σ = π − γ∫

.void v v vGb N dσ = α < >

3 2/ , ,
,              ,

r p p

r p

u r r r r
u r r r
= ε ≥
= ε ≤
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where Gp, np are the shear modulus and Poisson ratio of precipitate material, G is the shear
modulus of the matrix. If Gp = G and vp = 1/3, ε = (2/3)δ. For elastic moduli usually found
0.5δ ≤ ε ≤ δ [5].

From eq. (15) it follows, that the strain tensor components are equal to

(17)

The components of the stress tensor are linearly related to the strain tensor components.
Using the well known relations, one obtains that σrθ = σrϕ = σθϕ = 0 and

σrr = 2G[(1 – ν) εrr + 2ν εθθ]/(1 – 2ν),                              (18a)

σθθ = σϕϕ = 2G[(1 – ν) εθθ + ν (εrr + εθθ)]/(1 – 2ν),                     (18b)

where ν is the  Poisson ratio of matrix.
The substitution of eq. (17) into (18a) and (18b) results in

 (19)

Within coherent precipitate the effective stress is equal to zero. In matrix around the
precipitate the square of effective stress is given by

σ2
eff = (σrr – σθθ)2 = 36G2ε2rp

6/r6.                                   (20)

To obtain the square of effective stress produced in an arbitrary point of a material by
all precipitates having the radius rp , let us assume that the spatial distribution of the
precipitates is uniform. Multiplying the right�hand side of eq. (20) by fp(rp)drp×4πNpr2dr,
(fp(rp) is the distribution of precipitates on radii) and integrating over r from rp  to infinity,
one obtains

 (21)

Further, integrating the right hand side of eq. (21) over rp from zero to infinity and taking
square root of the result, one finally obtains

 (22)
where

 (23 )

is the volume fraction of coherent precipitates, Np is the precipitate concentration, brackets
denote the mean value.

In Ref. [11] it was found, that precipitate�induced strengthening and hardening of a
series of model steels and commercial reactor pressure vessel steels vary according to the
square root of the volume fraction of precipitate. As it was pointed out in Ref. [11] current
models [12 – 14] of the hardening produced by irradiation�induced copper�rich precipitates
include such a dependence.

By assumption, stresses around of a spherical incoherent precipitate are determined by
the interfacial surface energy γmp. In this case inside and outside of the precipitate only

3 3

;
3 3

2 / ,   ;
                 

,                   

/ ,      ;
,                 ;

                 0.

p p
rr

p

r p p

p

r r

r r r r
r r

u r r r r
r rrθθ ϕϕ

θ ϕ θϕ

⎧− ε ≥ε = ⎨ε ≤⎩
⎧ε ≥ε = ε = = ⎨ε ≤⎩

ε = ε = ε =

3 3

3 3

4 / ,                  ;
         

2 (1 ) /(1 2 ),      ;

2 / ,                   ;
2 (1 ) / (1 2 ),    .

p p
rr

p

p p

p

G r r r r
G r r

G r r r r
G r rθθ ϕϕ

⎧− ε ≥σ = ⎨ ε + ν − ν ≤⎩
⎧ ε ≥σ = σ = ⎨ ε + ν − ν ≤⎩

2 2 2 34
36 ( ( ) ).

3p p p pG r f r dr
π

σ = ε

6 ,p pG Vσ = ε

34
,

3p p pV N r
π

=
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diagonal components of stress tensor are non�zero. Moreover, inside of the particle the
diagonal components equal each to other and,. consequently, the effective stress vanishes.
Outside of the particle the stress field is similar to the field around of a void. Thus, the mean
effective stress in an arbitrary point can be described with expressions similar to eqs. (13),
(14) (Orowan formula), if to replace Nv → Np, <dv> → <dp> (dp = 2rp) and γ → γmp:

 (24)

STRENGTHENING BY DISLOCATION LOOPS
According to Refs. [15,16] in a cylindrical coordinate system r, z, ϕ the displacements

around of a circular interstitial loop of radius R and with the Burgers vector b, directed along
z�axis, in an infinite and elasticity isotropic medium are:

ur = –[b/4(1 – ν)][(1 – 2ν)I1
(0)(ρζ) – ζI1

(1)(ρζ)],                     (25a)

uz = –[b/4(1 – ν)][2(1 – ν)I0
(0)(ρζ) + ζI0

(1)(ρζ)],                     (25b)

      uϕ = 0,                                                                                      (25c)

where ρ = r/R,  ζ = z/R (z > 0).

 (26)

Jn is the nth�order Bessel function of the first kind.
Determining with the help of eqs.(25a) – (25c) the components of strain tensor and using

the well known relationship between components of stress and strain tensors, one obtains,
that

σrr = A[–I0
(1) + (1 – 2ν)I1

(0)/ρ + ζI0
(2) – ζI1

(1)/ρ],                     (27a)

σzz = A[–I0
(1) – ζI0

(2)],                                                              (27b)

σϕϕ = A[–(1 – 2ν)I1
(0)/ρ + ζI1

(1)/ρ – 2νI0
(1)],                            (27c)

σrz = – AζI1
(2),        σrϕ = σzϕ = 0,                                               (27d)

where
A = Gb/[2R(1 – ν)].                                              (28)

The expressions (27a) – (27d) allow to calculate the square of effective stress σeff, caused
by the loop of radius R at an arbitrary point of matrix. Introducing the loop size distribution
fl (R), so, that fl (R) dR is the concentration of loops having radius R, one obtains the square
of the effective stress produced by all loops:

(29)

Due to a complexity of the function (σeff /A)2, no attempts were undertaken to calculate
integrals on ρ and ζ in eq. (29). However it is clear, that the main contribution to these
integrals will origin from zones adjacent to the dislocation loop core, because at large
distances r = R(ρ2 + ζ2)1/2 from the loop the function σeff /A behaves as 1/r3 [10], and,
hence, large distances bring a small contribution. In immediate loop proximity the effective
stress differs only slightly from the effective stress of a straight edge dislocation, and the
integrals on ρ and ζ diverge logarithmically. Taking the minimum distance from loop edge

1/2(32 / 3) ( / ) .p mp p pGb Gb N dσ = π γ ⋅ < >

( )
1

0

( ) ( ) ( )exp( ) ,m m
n nI t J t J t t dt

∞

ρζ = ρ − ζ∫

2 3 2 2

0 0 0
2 2

2
2

0 0

4 ( ) ( / )

     2 ( ) ( / ) .
2(1 )

loop eff

eff

R A f R dR d d A

G b
Rf R dR d d A

∞ ∞ ∞

∞ ∞ ∞

−∞

σ = π ρ ρ ζ σ =

π
= ρ ρ ζ σ

− ν

∫ ∫ ∫

∫ ∫ ∫
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equal to the dislocation core radius r0, and the maximum distance equal to the loop radius,
one finds that the integral on ρ and ζ will be proportional to ln(R/r0). Since the logarithm
is the slight function of argument, when integrating on R it can be taken approximately as
ln(<Rloop>/r0), where <Rloop> is the mean loop radius, and without a large error can be taken
out of the integral. Seemingly, the final result of calculations will be similar to eq. (6), where
the following replacements is made (ρe/a) → 2π<Rloop>Nloop and ln(Re/r0) → ln(<Rloop>/r0).
In these approximations from eq. (29) it follows that

 (30)

where Nloop is the loop concentration, the constant αloop is close to αdisl in magnitude.

SUPERPOSITION OF VARIOUS LATTICE DEFECTS IN HARDENING
According to the approach proposed in this paper, if there are barriers of different types

in the material, the square of the effective stress will be equal to the sum of the squares of
effective stresses created by the various barriers, so that

 (31)

In Ref. [16] it was shown, that Eq. (31) fits better experimental data on hardening
of niobium at low neutron irradiation doses as compared with the arithmetical sum of
different hardening increments. According to Ref. [17] fitting the temperature
dependence of hardening in molybdenum, niobium and their dilute alloys irradiated with
fast neutron fluences close to 1022 n/cm2, is considerably improved if to use eq. (31)
instead of σy = σdisl + σvoid + σloop + … .

CONCLUSIONS
A hypothesis, according to which the yield strength is determined by the square of

effective stress at an arbitrary point of a material created by all components of the
microstructure (by dislocations, voids, precipitate particles, dislocation loops etc.), allows
to derive analytically the hardening constants.

In the approach developed above the yield strength is equal to the root square of the
total squares of effective stress caused by different hardening mechanisms in the case, if
the spatial distributions of these barriers are random and independent.
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ТЕОРИЯ РАДИАЦИОННОГО УПРОЧНЕНИЯ МЕТАЛЛОВ
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РЕФЕРАТ
Общепринятый подход при оценке упрочнения состоит в вычислении критичес�

кого скалывающего напряжения при продавливании сегмента скользящей дислока�
ции между двумя однотипными барьерами. Согласно теории Орована, критическое
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сдвиговое напряжение τk определяется средним расстоянием l между препятствия�
ми: τk = αGb/l (α – константа; G – модуль сдвига; b – вектор Бюргерса). Суперпо�
зиция различных барьеров учитывается либо простым суммированием их вкладов
τi (i = 1, 2, 3, … ) в критическое скалывающее напряжение τk = τ1 + τ2 + τ3 + …, либо
как τk

2 = τ1
2 + τ2

2 + τ3
2 + … . Оба способа суммирования вкладов не имеют до сих

пор теоретического обоснования. На основе принципа максимального сдвигового
напряжения (критерий Треска) τk для поликристаллических образцов связывается
с пределом текучести в испытаниях на растяжение σy  соотношением σy = 2τk. На
основе понятия эффективного напряжения (энергетическое условие пластичности)
эта связь имеет вид σy = (√3)τy (критерий Мизеса). Иногда используется критерий
Тейлора, согласно которому σy = 3.06⋅τk .

Предлагается другой способ вычисления предела текучести металлов и спла�
вов. Использовано энергетическое условие пластичности (критерий Мизеса), со�
гласно которому пластическое течение материала происходит тогда, когда удель�
ная потенциальная энергия формоизменения, пропорциональная квадрату эффек�
тивного напряжения σeff, достигает некоторого предельного для данного мате�
риала значения, пропорционального квадрату предела текучести σy при одноос�
ном растяжении.

Предполагается, что для начала пластического течения обусловленная внешни�
ми силами удельная потенциальная энергия формоизменения должна превысить
предельное значение, равное удельной потенциальной энергии формоизменения,
созданной всеми дефектами микроструктуры (дислокациями, дислокационными пет�
лями, порами, выделениями и др.). Такой подход позволяет вычислить коэффици�
енты барьерного упрочнения α. Согласно предлагаемому подходу, предел текучес�
ти равен корню квадратному из суммы квадратов вкладов всех типов дефектов
(«геометрическое» суммирование вкладов).

Ключевые слова: радиационное упрочнение, предел текучести, металлы и спла�
вы, дислокации, поры, частицы фазовых выделений.
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