УДК 621.039.51

ГРАНИЧНЫЕ РЕЗОНАНСНЫЕ ЭФФЕКТЫ В БЫСТРОМ РЕАКТОРЕ С ГЕТЕРОГЕННОЙ АКТИВНОЙ ЗОНОЙ

А.А. Безбородов^{*}, Е.В. Долгов^{*}, Д.А. Клинов^{*}, В.В. Колесов^{**}, В.Ю. Стогов^{*}, И.Р. Суслов^{*}, В.И. Фоломеев^{*} *ГНЦ РФ-Физико-энергетический институт им. А.И. Лейпунского, г. Обнинск

" Г нц РФ-Физико-энергетический институт им. А.И. Лейпунского, г. Обнинск * * Обнинский институт атомной энергетики НИЯУ МИФИ, г. Обнинск

Исследовались граничные резонансные эффекты с применением быстродействующей методики использования подгруппового приближения в практических задачах описания сечений взаимодействия нейтронов с ядрами нуклидов среды в резонансной области энергий для физического моделирования реакторных установок на быстрых нейтронах с гетерогенной активной зоной.

Ключевые слова: гетерогенная активная зона, резонансная гетерогенность, коэффициент размножения, реакторная установка на быстрых нейтронах. Key words: heterogeneous core, resonance heterogeneity, multiplication factor, fast reactor plant.

Выбор оптимальных параметров быстрых реакторов в новой технологической платформе с замыканием топливного цикла по урану, плутонию и долгоживущим актиноидам во многом зависит от конструктивной конфигурации активной зоны, взаимного расположения ТВС с топливом и с воспроизводящим материалом. В этой связи разработано несколько различных вариантов активных зон быстрых реакторов [1], в том числе и гетерогенных активных зон, в которых ТВС зоны воспроизводства размещаются непосредственно в активной зоне. Гетерогенные активные зоны имеют высокие коэффициенты воспроизводства, требуют меньшую эффективность органов регулирования и аварийной защиты. Они имеют меньший пустотный эффект реактивности, что важно для ядерной безопасности реактора [2]. По ним проводятся глубокие исследования проблемы их термодинамических характеристик расположенных в активной зоне групп ТВС с воспроизводящим материалом в зависимости от выгорания, а также КПД реактора при пониженных температурных параметрах теплоносителя [3]. На характеристики гетерогенных активных зон оказывает влияние так называемая ослабленная нейтронная связь пространственно разделенных областей активной зоны [4]. Вблизи границ раздела физических зон реактора имеются переходные области, в которых резонансная структура нейтронного спектра, характерная для данной зоны, испытывает влияние соответствующей структуры спектра соседней зоны. В зависимости от размеров и составов физических зон переходные области могут занимать различ-

© А.А. Безбородов, Е.В. Долгов, Д.А. Клинов, В.В. Колесов, В.Ю. Стогов, И.Р. Суслов, В.И. Фоломеев, 2012

ΦИЗИКА И ТЕХНИКА РЕАКТОРОВ

ный объем и оказывать определенное влияние на характеристики реактора. Примерами отсутствия заметного влияния переходных областей на нейтронно-физические характеристики реактора могут служить быстрые реакторы с традиционной компоновкой активной зоны ввиду их характерного состава зон и соотношения между средними по энергии пробегами нейтронов и размерами различных зон реактора. В расчетах таких компоновок хорошо зарекомендовали себя групповые константы, для подготовки которых используются приближения – протяженные гомогенные физические зоны с допущением разделения энергетических и пространственных переменных. К сожалению, при таком подходе не учитываются нерассеянные нейтроны на границах зон. В случае же быстрых реакторов с отражателями из конструкционных материалов средней атомной массы (железа, никеля) на границе с отражателем имеются переходные области, в которых резонансная структура нейтронного спектра, характерная для данной зоны, испытывает сильное влияние резонансной структуры спектра соседней зоны. Особенность резонансной структуры железа — наличие глубоких минимумов в полном сечении из-за интерференции резонансного и потенциального рассеяния. Длина свободного пробега нейтронов с энергией, соответствующей интерференционным минимумам, составляет десятки сантиметров. Этим обусловливаются большие размеры переходных приграничных областей, в которых устанавливается резонансная структура нейтронного спектра. Резонансная самоэкранировка сечений сильно зависит от пространственных координат. В этом случае групповые константы не учитывают граничные резонансные эффекты, вызванные нерассеянными резонансными нейтронами, спектр которых ослабляется по экспоненте, существенно зависит от координат, и разделение энергетических и пространственных переменных нейтронного спектра некорректно. В работах [5, 6] для оценки влияния граничных резонансных эффектов на характеристики быстрых реакторов со стальными отражателями были применены детерминистические численные методы ВПС и DS_п (компьютерные коды FFCP-MULT, SANS-B, ONEDANT из системы DANTSYS 3.0) в сочетании с высокоэффективным подгрупповым подходом с использованием данных российской системы констант БНАБ-93 [7], имеющей статус Рекомендованных справочных данных (Сертификат ВНИЦСМВ ГСССД № 444 от 01.08.95). При этом групповые расчеты занижали критичность в среднем на 1,5%.

Для быстрых же реакторов с гетерогенной активной зоной, включающей в себя сырьевые вставки (в кольцевых зонах воспроизводства), средняя по энергии оптическая толщина зон которых становится сравнимой с длинами свободного пробега нейтронов, необходимо исследование достаточности применения для их расчетов групповых констант и влияния граничных резонансных эффектов на их характеристики, что является целью данной работы.

Рассмотрим расчетную модель реактора типа БН-1600 с гетерогенной активной зоной [8]. Это цилиндрическая модель с окисным уран-плутониевым топливом (U0₂-PuO₂) в зонах малого обогащения (3MO), с боковым экраном (БЭ) из двуокиси урана (UO₂) и с радиальными кольцами (внутренние зоны воспроизводства – B3B) с воспроизводящим материалом – металлическим ²³⁸U (заметный эффект уменьшения времени удвоения по сравнению с окисным воспроизводящим материалом [9]). Из-за резонансного характера сечения поглощения урана нейтроны резонансных энергий сильнее поглощаются в поверхностных слоях B3B – эффект резонансной самоэкранировки. В случае металлического урана эффект увеличивается за счет малого сечения разбавления воспроизводящей вставки, но уменьшается из-за жесткого нейтронного спектра. В окисных вставках – наоборот. Общая величина резонансного гетерогенного эффекта зависит от жесткости спектра и размеров вставок. В рассматриваемой модели больший резонансный эффект получается для воспроизводящих зон из металлического урана.

Ядерные плотности материалов приведены в табл. 1. В целях определения влияния на исследуемые характеристики реактора межкассетного натрия и стенок кожухов граничных сборок рассматривалась вторая расчетная модель, отличавшаяся от первой тем, что на границах физических зон дополнительно выделено шесть зон с толщинами по 8 мм каждая, состоящих из смеси натрия и стали. Таким образом, первая модель состоит из семи физических зон, а вторая из тринадцати; при этом загрузка всех материалов в реактор сохранена.

Таблица 1

Нуклид	B3B 1, 2, 3	3MO 1, 2, 3	БЭ	
²³⁸ U	0,01953	0,006978	0,00851	
²³⁹ Pu	-	0,0009215	-	
²⁴⁰ Pu	-	0,0003064	-	
²⁴¹ Pu	-	0,0002303	-	
²⁴² Pu	-	0,00007677	-	
0	-	0,01703	0,01703	
Na	0,005608	0,007852	0,007852	
С	0,003004	0,003004	04 0,003004	
Fe	0,01141	0,01141	0,01141	
Ni	0,0021	0,0021	0,0021	
Мо	0,000187	0,000187	0,000187	

Ядерные плотности нуклидов (10²⁴ яд. см⁻³) в гомогенной модели реактора БН-1600

В таблице 2 приведены ядерные плотности материалов для второй модели. По программе FFCP-MULT были проведены расчеты обеих моделей в групповом (28

Таблица 2

Ядерные плотности нуклидов (10²⁴ яд. см⁻³) в гетерогенной модели реактора БН-1600

	-					
Нуклид	Na+сталь	B3B 1	B3B 2, 3	3M0 1, 2	3M0 3	БЭ
²³⁸ U	-	0,020335	0,020811	0,0071241	0,0070739	0,0085704
²³⁹ Pu	-	-	-	0,0009408	0,00093417	
²⁴⁰ Pu	-	-	-	0,00031282	0,00031061	
²⁴¹ Pu	-	-	-	0,00023512	0,00023347	
²⁴² Pu	-	-	-	0,00007838	0,00007783	
0	-	-	-	0,017387	0,017264	0,017151
Na	0,0130	0,0053032	0,0051233	0,0077442	0,0077812	0,0078155
С	0,0075	0,0028186	0,0027092	0,0029098	0,0029422	0,0029721
Fe	0,0285	0,010705	0,010289	0,011052	0,011175	0,011289
Ni	0,0052	0,0019722	0,0018967	0,0020351	0,0020574	0,002078
Мо	0,0005	0,00017409	0,00016648	0,00018045	0,0001827	0,00018478

энергетических групп) и подгрупповом вариантах с использованием констант БНАБ: всего четыре расчета на одинаковой пространственной сетке (103 геометрические зоны) в цилиндрической геометрии. Резонансная структура принималась во внимание для ²³⁸U и ²³⁹Pu, учет остальных нуклидов ничего существенного не внес.

Рассмотрим групповой и подгрупповой расчеты по первой модели с константами, блокированными по спектрам гомогенных сред. Подгрупповой расчет по отношению к групповому дает эффект резонансной гетерогенности для первой модели, т.е. учет подгруппового разбиения ядерных данных. В групповом расчете первой модели $k_{3\phi\phi}$ = 1,01295, в подгрупповом $k_{3\phi\phi}$ = 1,01372. Групповой расчет второй модели назовем «гетерогенным групповым расчетом», а подгрупповой -«гетерогенным подгрупповым расчетом» – учет увеличения числа расчетных зон. Гетерогенный подгрупповой расчет по отношению к гетерогенному групповому расчету дает эффект резонансной гетерогенности для второй модели. Для второй модели в гетерогенном групповом расчете $k_{3\phi\phi}$ = 1,01544, а в гетерогенном подгрупповом $k_{3\Phi\Phi}$ = 1,01583. Гетерогенный групповой расчет второй модели по отношению к групповому расчету первой модели дает спектральную составляющую полного гетерогенного эффекта, т.е. эффект пространственной гетерогенности, обусловленный слоями с натрием и сталью. Гетерогенный подгрупповой расчет второй модели по отношению к групповому расчету первой модели дает полный гетерогенный эффект – учет подгруппового разбиения ядерных данных и увеличения числа расчетных зон. Отношение полного гетерогенного эффекта к спектральному гетерогенному эффекту дает резонансный гетерогенный эффект второй модели, что как раз и позволяет оценить резонансные краевые эффекты на границах зон для реалистичной второй модели.

Гетерогенные эффекты, проявляющиеся в распределениях средних сечений захвата на ²³⁸U (индекс C^8) и делений на ²³⁹Pu и ²³⁸U (индексы f^9 и f^8), представлены на рис. 1–4 (реальные размеры пар крайних твэлов и зон с натрием и сталью из-за их малых размеров увеличены для лучшего изображения краевых эффектов). Представление о действительных размерах приграничных областей, в которых проявляются краевые эффекты, наглядно дает рис. 4, где изображена реальная пространственная расчетная сетка. Гетерогенные эффекты в скоростях процессов на этих же нуклидах имеют такие же распределения за исключением областей, где данные нуклиды реально отсутствуют: f^9 для B3B и слоев с натрием и сталью для всех трех индексов, что и показано на рис. 4 в виде разрывов в гистограмме распределения полного гетерогенного эффекта в скорости захвата на ²³⁸U (индекс C^8). Рисунки 1а–3а показывают распределение полного гетерогенного эффекта в индексах C^8 , f^9 и f^8 :

$$A_{i}^{x}(r) = \frac{\sum_{g=1}^{NG} \sum_{p=1}^{NP} \varphi_{p}^{2,g}(r) \sigma_{x,i,p}^{g}(r)}{\sum_{g=1}^{NG} \varphi^{1,g}(r) \sigma_{x,i}^{g}(r)}$$

17

Известия вузов • Ядерная энергетика • №4 • 2012

19

Рисунки 16-36 - спектральный гетерогенный эффект:

$$\mathsf{b}_{i}^{x}(r) = \frac{\sum_{g=1}^{NG} \varphi^{2,g}(r) \sigma_{x,i}^{g}(r)}{\sum_{g=1}^{NG} \varphi^{1,g}(r) \sigma_{x,i}^{g}(r)}$$

Рисунки 1в-3в – эффект резонансной гетерогенности:

$$\mathsf{B}_{i}^{x}(r) = \frac{\mathsf{A}_{i}^{x}(r)}{\mathsf{b}_{i}^{x}(r)} = \frac{\sum_{g=1}^{N^{c}} \sum_{p=1}^{N^{c}} \varphi_{p}^{2,g}(r) \sigma_{x,i,p}^{g}(r)}{\sum_{g=1}^{N^{c}} \varphi_{p}^{2,g}(r) \sigma_{x,i}^{g}(r)}$$

Произведение двух последних эффектов дает полный гетерогенный эффект.

Перейдем к анализу расчетных результатов. Индекс C^8 (рис. 1, 4) слабо чувствителен к спектральной составляющей – резонансный и полный гетерогенные эффекты в C^8 практически совпадают. Слои со сталью и натрием из-за отсутствия в них урана разблокируют сечение захвата на ²³⁸U, что проявляется в резких подъемах его среднего сечения в слоях со сталью от 20 до 38%. Тем самым несколько увеличивается резонансная самоэкранировка: всплески C^8 в крайних твэлах B3B до 6% и уменьшение C^8 внутри B3B до -1,5%. Из-за более жесткого спектра в меньшей степени это наблюдается в 3МО – в крайних твэлах C^8 увеличивается на 3%.

Иная картина наблюдается в индексе f^8 (рис. 3). В силу практического отсутствия резонансной структуры в сечении деления ²³⁸U спектральная составляющая гетерогенного эффекта совпадает с полным гетерогенным эффектом. Осцилляции в спектральной составляющей в f^8 незначительны: от 1,5% в 3МО до –5% в слоях натрия и стали, где неупругое рассеяние на стали и натрии уводит нейтроны под порог деления ²³⁸U.

Рис. 4. Полный гетерогенный эффект в скорости захвата на ²³⁸U на расстояниях от 50 до 82 см в реальном пространственном масштабе

В индексе f^9 (рис. 2) проявляются обе составляющие гетерогенного эффекта. Полный гетерогенный эффект во всплесках f^9 в крайних твэлах на границах зон составляет от 1 до 3,5% (рис. 2а). Слабые осцилляции спектральной составляющей f^9 (рис. 26) связаны с энергетической зависимостью сечения деления. В силу общей жесткости спектра в 3МО слабо проявляется резонансная самоэкранировка. Слои стали и натрия незначительно разблокируют f^9 в крайних твэлах на границах 3МО – от 1 до 2,5%.

Всплески скорости деления (из-за резонансной гетерогенности) на ²³⁹Pu в приграничных твэлах топливных сборок от 1 до 2,5% не могут привести к заметному перекосу поля энерговыделения. Увеличение по той же причине скорости захвата ²³⁸U в крайних твэлах воспроизводящих сборок на ~ 6% компенсируется ее понижением в центре ВЗВ, что не приводит к изменению КВ. Эффект резонансной гетерогеннности в $k_{эф\phi}$ получается для всего реактора менее 0,1%, как впрочем и для коэффициентов размножения для бесконечных сред в расчетах ячеек отдельных сборок [10].

Таким образом, расчетные исследования направленные на изучение граничных резонансных эффектов и собственно резонансной гетерогенности в реакторе типа БН-1600 с гетерогенной активной зоной выявили их небольшое влияние на нейтронно-физические характеристики реактора.

ЗАКЛЮЧЕНИЕ

В реакторах на быстрых нейтронах вблизи границ раздела физических зон имеются переходные области, в которых резонансные структуры нейтронных спектров соседних зон испытывают взаимное влияние, что обусловливает наличие граничных резонансных эффектов. Традиционные многогрупповые численные методики не могут их учитывать. Исследованы граничные резонансные эффекты в модели большого энергетического быстрого реактора с гетерогенной активной зоной. Они не оказывают существенного влияния на основные нейтронно-физические характеристики реактора (энерговыделение, КВ, критичность) из-за общей жесткости спектра и наличия ²³⁸U как в ВЗВ, так и в ЗМО. Наличие эффективного расчетного инструмента позволяет производить оценку граничных резонансных эффектов в быстрых реакторах различного класса.

Исследования проведены при финансовой поддержке Российского фонда фундаментальных исследований и Правительства Калужской области (проект № 09-02-97513).

Литература

1. Поплавский В.М., Цибуля А.М., Хомяков Ю.С. и др. Активная зона и топливный цикл для перспективного быстрого натриевого реактора//Атомная энергия. – 2010. – Т. 108. – Вып. 4. – С. 206-211.

2. Бурьевский И.В., Елисеев В.А., Малышева И.В. и др. Эффекты реактивности в активных зонах перспективного быстрого реактора большой мощности и с различными величинами НПЭР//Препринт ФЭИ-3129. – Обнинск. – 2008.

3. Поплавский В.М., Забудько Л.М., Шкабура И.А. и др. Топливо для перспективных быстрых натриевых реакторов – текущее состояние и планы//Атомная энергия. – 2010. – Т. 108. – Вып. 4. – С. 212-217.

4. Кесслер Г. Ядерная энергетика. – М.: Энергоатомиздат, 1986.

5. *Безбородов А.А., Клинов Д.А., Колесов В.В.* и др. Макроподгрупповое моделирование реакторной установки на быстрых нейтронах//Известия вузов. Ядерная энергетика. – 2009. – № 4. – С. 177-184.

ΦИЗИКА И ТЕХНИКА РЕАКТОРОВ

6. *Безбородов А.А., Долгов Е.В., Клинов Д.А.* и др. Физический расчет реакторной установки на быстрых нейтронах с использованием сингулярных функций//Известия вузов. Ядерная энергетика. – 2010. – № 4. – С. 177-184.

7. *Manturov G.N., Nikolaev M.N., Tsiboulya A.M.* The ABBN-93 Group Data Library. Part 1: Nuclear Data for Calculation of Neutron and Photon Radiation Fields. INDC(CCP)-409/L, Vienna, IAEA, 1997, P. 65.

8. *Троянов М.Ф., Матвеев В.И., Новожилов А.И. и др*. Концепция активных зон энергетических реакторов на быстрых нейтронах; оптимизация физических характеристик реактора БН-1600/ In Proceedings of an international symposium on fast reactor physics (Aix-en-Provence, 24-28 September 1979). V. II, Vienna, IAEA, 1980. – P. 117-133.

9. Бобров С.Б., Данилычев А.В., Елисеев В.А. и др. Пути развития быстрых энергетических реакторов с высоким коэффициентом воспроизводства//Атомная энергия. – 1983. – Т. 54. – Вып. 4. – С. 269-273.

10. *Морозов А.Г., Слесарев И.С., Кузьминов В.В.* Погрешности расчетных моделей в исследованиях нейтронно-физических характеристик быстрых реакторов с гетерогенными активными зонами//Вопросы атомной науки и техники. Сер. Физика и техника ядерных реакторов. – 1983. – Вып. 5(34). – С. 61-65.

Поступила в редакцию 21.03.2012

ABSTRACTS OF THE PAPERS

УДК 621.039.51

New Technique to Reformat Multigroup Cross-Sections for Monte-Carlo Calculation \I.R. Suslov, I.V. Tormyshev, K.G. Mel'nikov; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering). – Obninsk, 2012. – 8 pages, 3 tables, 2 illustrations. – References, 21 titles.

New method to calculate equiprobability bins from Legendre expansion scattering cross-sections is proposed. The method uses a correction of equiprobability bins boundaries to provide a conservation of the first angular moment. The code CRSRD-ST to reformat cross sections from DTF to ACE format with proposed technique is developed. Numerical results shows the method proposed significantly improves an agreement between deterministic and Monte-Carlo calculations.

УДК 621.039.51

Boundary Resonance Effects in the Fast Reactor with the Heterogeneous Core \A.A. Bezborodov, E.V. Dolgov, D.A. Klinov, V.V. Kolesov, V.Yu. Stogov, I.R. Suslov, V.I. Folomeev; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering). – Obninsk, 2012. – 10 pages, 2 tables, 4 illustrations. – References, 10 titles.

Boundary resonance effects is considering with the application of the high-speed subgroup approximation technique employment in practical tasks for description of neutron cross-sections interactions with media nuclides nuclei in resonance part of energy for physical simulation of the fast reactor plants with the heterogeneous core.

УДК 621.039.51

Energy Deposition Evaluation in the Target with Uranium-Containing Material for the ⁹⁹Mo Production in WWR-C Reactor with the Impruved Design of Target\O.Yu. Kochnov, V.V. Kolesov, R.V. Fomin; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering). – Obninsk, 2012. – 7 pages, 2 tables, 9 illustrations. – References, 2 titles.

Increased production of the ⁹⁹Mo in the context of rising global demand is an urgent task. The new type of target for ⁹⁹Mo producing in WWR-c reactor technological channels was developed. A series of calculations to estimate energy deposition for standard and modified target were done. A considerable energy deposition increasing in modified target was found.

УДК 621.039.56

Method of ¹⁶N Generation for Test of Radiation Controlled Cannels on Nuclear Power Stations with Water-Cooled Reactors \V.A. Khryachkov, I.P. Bondarenko, P.A. Dvornikov, B.V. Zhuravlev, S.N. Kovtun, T.A. Khromyleva, A.V. Pavlov, N.G. Roschin; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering). – Obninsk, 2012. – 5 pages, 3 illustrations. – References, 3 titles.

The preferences of ${}^{19}F(n,\alpha){}^{16}N$ nuclear reaction use for radiation control channels test on watercooled power reactors are analyzed. The new measurements for more accurate determination of ${}^{19}F(n,\alpha){}^{16}N$ reaction cross section energy dependence have been carried out. A set of new methods for background reducing and improvement of events determination reliability was developed.

УДК 621.039.524.44:697.93

Calculation-based Justification for the Algorithm of Pipelines Leak Control by Air Humidity \P.A. Dvornikov, S.N. Kovtun, A.A. Budarin, V.P. Polionov, N.N. Titarenko, D.M. Shvetsov, N.G. Roshchin, A.L. Matveev, E.L. Matveev; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering). – Obninsk, 2012. – 10 pages, 9 tables, 3 illustrations. – References, 9 titles.

Dynamic processes in thermal insulation of power plants pipelines caused by depressurization are the goal of the research. Simulation of various leaks was realized by using adapted computer code KUPOL-M developed in SSC RF IPPE.

УДК 621.039.58

Analysis of the Errors Committed by NPP MCR Operators during Implementation of Operating Procedures N.V. Pleshakova, A.N. Anokhin; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya