УДК 621:039:51

ПРЕОБРАЗОВАНИЕ ГРУППОВЫХ МАКРОСКОПИЧЕСКИХ СЕЧЕНИЙ ДЛЯ ИСПОЛЬЗОВАНИЯ В ПРОГРАММАХ МЕТОДА МОНТЕ-КАРЛО

И.Р. Суслов, И.В. Тормышев, К.Г. Мельников ГНЦ РФ-Физико-энергетический институт им. А.И.Лейпунского, г. Обнинск

Предложен новый вариант алгоритма преобразования сечений рассеяния из разложения по полиномам Лежандра в представление равновероятных интервалов, включающий в себя корректировку границ равновероятных интервалов, сохраняющую первый угловой момент сечений рассеяния. Алгоритм реализован в программе CRSRD-ST, преобразующей сечения в многогрупповой формат программы MCNP. На модельных задачах продемонстрировано существенное улучшение согласованности детерминистических расчетов и расчетов по Монте-Карло.

Ключевые слова: перенос нейтронов, метод Монте-Карло, групповое приближение, анизотропия рассеяния.

Key words: neutron transport, Monte-Carlo method, multi-group approach, scattering anisotropy.

введение

В рамках проекта МНТЦ-3814 ведутся работы по созданию, верификации и валидации реакторных нейтронно-физических кодов нового поколения для расчета энергетических реакторов ВВЭР и PWR на основе как детерминистических методов (методы характеристик, ВПС, поверхностных гармоник), так и метода Монте-Карло. Оба подхода (детерминистический и Монте-Карло) имеют для этих целей свои плюсы и минусы. Работы в этом направлении интенсивно обсуждались минувшее десятилетие на конференциях по математическим вычислениям в реакторных приложениях. Значительное внимание уделялось созданию комбинированных (гибридных) методов расчетов, сочетающих детерминистические методы и метод Монте-Карло.

Метод Монте-Карло позволяет использовать непрерывное описание сечений взаимодействия и точно моделировать рассеяние частиц, тогда как для расчета трехмерных полномасштабных моделей реакторов по детерминистическим методам требуется использование групповых констант, полученных на основе методов гомогенизации. С другой стороны, при получении полей энерговыделения по методу Монте-Карло с необходимой для инженерных целей точностью большие размеры задачи (более 200 ТВС, 100 аксиальных слоев, 300 твэлов на ТВС, 10 зон

© И.Р. Суслов, И.В. Тормышев, К.Г. Мельников, 2012

выгорания в каждом твэле, 100 изотопов в расчете выгорания [1–3]) приводят к общему количеству рассчитываемых функционалов в методе Монте-Карло порядка шести миллиардов. При необходимой статистической точности 1% для такого расчета требуется, по оценкам работы [3], порядка 20-ти миллиардов историй.

В настоящее время возможности вычислительной техники позволяют поставить на повестку дня в качестве долговременной цели создание программ для решения уравнения переноса детерминистическими методами без использования гомогенизации. Усилия по развитию таких программ концентрируются в трех направлениях [3]: в DH-методе (Dynamic Homogenization) использование итераций между ячеечными и гомогенными расчетами позволяет выполнить полномасштабный расчет реактора без гомогенизации, по крайней мере, для двумерной геометрии; в PAS-методе (Planar-Axial Syntesis) трехмерное решение получается на основе совместного решения уравнения переноса низкого порядка аппроксимации в аксиальном направлении с ячеечными расчетами в плоскости; в RH-методе (Reduces Homogenization) гомогенизация в трехмерных расчетах переносится на уровень ячейки. Во всех трех направлениях решающую роль играют преимущества метода характеристик.

Оба подхода (детерминистический и Монте-Карло) должны развиваться одновременно и параллельно. Также необходимо развивать и гибридные методы расчета, сочетающие в себе оба подхода (например, [4–6]), при этом важно иметь возможность выполнять расчеты при максимально согласованных исходных данных [7].

Отметим, что последнее время вырос интерес к генерации многогрупповых сечений с учетом анизотропии рассеяния методом Монте-Карло [8–10]. Возможны и другие применения многогрупповых констант в программах Монте-Карло, например, в ряде задач расчет может быть существенно ускорен за счет использования группового представления нейтронных сечений для большей части задачи и непрерывных по энергии сечений только в небольшой выделенной области [11].

Проблема согласования констант детерминистических расчетов с методом Монте-Карло исследуется достаточно давно, но пока не имеет полностью удовлетворительного решения для анизотропии рассеяния, аккуратный учет которой при выходе на новые точности расчета становится все более важным и привлекает большее внимание расчетчиков и разработчиков программ [8–12]. Особенно важным это может оказаться для расчетов без гомогенизации, где влияние анизотропии рассеяния может оказаться большим, чем в традиционных ячеечных расчетах.

Созданная разработчиками кода MCNP программа для ввода многогрупповых сечений CRSRD [13], как и программы, разработанные другими исследователями, например [14], для широкого использования недоступны из-за наличия нерешенных методических вопросов. В частности, подход, основанный на конечном наборе значений косинуса угла рассеяния, нефизичен и вызывает определенные сомнения при больших градиентах потоков, возникающих при расчетах без гомогенизации. Таким образом, дальнейшее развитие алгоритмов преобразования групповых констант в форматы метода Монте-Карло, улучшающее согласование результатов, получаемых по этим методам, является актуальной задачей.

Перевод констант из одного формата в другой не является чисто технической задачей и требует решения определенных методических проблем. Традиционно в детерминистических методах отрицательные значения сечений считаются допустимыми в некоторых случаях и исправляются процедурами коррекции (fix-up), тогда как для метода Монте-Карло они неприемлемы абсолютно. В данной работе представлен алгоритм перевода групповых сечений в версию многогруппового формата MCNP, использующую приближение равновероятных интервалов косинуса угла рассеяния. Изложенный ниже алгоритм реализован в программе CRSRD-ST. Особенностью реализованного алгоритма является сохранение нулевого и первого моментов рассеяния в рамках метода равновероятных интервалов. Алгоритм проверен на аналитической задаче с линейно анизотропным рассеянием и на многогрупповой тестовой задаче. В расчетах использовались основанная на методе характеристик программа MCCG3D [15–17] на исходных групповых сечениях и программа метода Монте-Карло VEGA [18], согласованная по представлению констант с MCNP.

ОПИСАНИЕ АЛГОРИТМА ПРЕОБРАЗОВАНИЯ СЕЧЕНИЙ

В работе рассматривается алгоритм перевода сечений для расчета переноса нейтронов и гамма-квантов из формата XSLIB с описанием анизотропии полиномами Лежандра [19] в формат групповых сечений MCNP с заданием анизотропии рассеяния в приближении равновероятных косинусов [12]. Формат XSLIB является основным для программы MCCG3D и широко используется в других программах метода дискретных ординат. В этом формате представлены данные широко используемых библиотек групповых констант переноса нейтронов и гамма-квантов CASK, BUGLE96, BNAB.

Преобразование базового набора констант (без описания анизотропии рассеяния)

Без учета описания анизотропии рассеяния для заполнения многогрупповых таблиц MCNP для каждой энергетической группы g необходимы следующие константы: Σ_t^g – полное сечение взаимодействия; $\Sigma_{s,0}^{g \to g'}$ – нулевой момент сечения рассеяния из энергетической группы g в группу g'; Σ_a^g – сечение поглощения; Σ_f^g – сечение деления; v^g – количество вторичных нейтронов деления; χ^g – спектр нейтронов деления. Для полного набора констант задача заполнения многогрупповых таблиц сечений MCNP сводится к следующим действиям:

• чтение таблиц файла XSLIB;

• пересылка сечений на соответствующие места таблиц MCNP;

• запись этих таблиц в новом формате в соответствующий файл библиотеки MCNP;

• формирование соответствующей записи для файла XSDIR.

Для неполного набора (например, при отсутствии Σ_a^g , Σ_f^g , ν^g) недостающие величины достаточно легко восстанавливаются.

Базовая аппроксимация анизотропии рассеяния равновероятными косинусами (АРКО)

Физически важным свойством в рамках группового метода, которое сохранятся в аппроксимации равновероятными косинусами (АРК), является наличие интервалов угловой переменной µ, в которых рассеяние из энергетической группы g в группу g' невозможно. Для получения АРКО используем кумулятивный интеграл от индикатрисы рассеяния f, равный вероятности рассеяния с косинусом угла рассеяния меньше µ:

$$F(\mu) = \int_{-\infty}^{\mu} f(\mu') d\mu'.$$

Границы равновероятных интервалов μ_i , i = 0, ..., I находятся из условия $\mu_i = \min{\{\mu, F(\mu) = i/I, f(\mu) \ge 0\}}$.

7

Если индикатриса рассеяния f отрицательна при $\mu = -1$ или $\mu = 1$, то μ_0 не равно -1, μ_I не равно 1. Таким образом, исходная индикатриса рассеяния f заменяется ступенчатой индикатрисой $f^{\text{АРКО}}$ с I равновероятными интервалами, в пределах каждого из которых плотность распределения равна

$$f_{i}^{\text{APKO}}\left(\mu\right) = \frac{1}{\Delta_{i}} \int_{\mu_{i}}^{\mu_{i+1}} f\left(\mu'\right) d\mu' = \frac{1}{I\Delta_{i}},$$

где $\Delta_i = \mu_{i+1} - \mu_i$. АРКО сохраняет интеграл сечения рассеяния по углу, но приводит к погрешности в аппроксимации первого и более высоких угловых моментов сечения рассеяния. Если индикатриса рассеяния всюду неотрицательна, то, увеличивая количество равновероятных интервалов *I*, погрешности в аппроксимации всех моментов можно сделать сколь угодно малыми. В противном случае погрешности всех моментов, кроме нулевого, остаются конечными.

Аппроксимация РК, сохраняющая нулевой и первый моменты (АРК1)

Естественным развитием АРКО является попытка, не уходя далеко от полученного физически разумного приближения, подкорректировать границы интервалов μ_i так, чтобы точно сохранялся, по крайней мере, первый момент. Получение аппроксимации индикатрисы рассеяния набором равновероятных косинусов с сохранением первого углового момента сечения рассеяния (АРК1) формулировалось как задача минимизации квадратичного отклонения

$$W = \sum_{i=2}^{l} w_i \delta_i^2$$

при выполнении линейного уравнения для сохранения первого углового момента индикатрисы рассеяния *p*1

$$\mathbf{0.5\delta}_0 + \sum_{i=1}^{I-1} \delta_i + \mathbf{0.5\delta}_I = I\Delta_p$$

и I неравенств, ограничивающих плотность углового распределения индикатрисы

$$\mu_{i,1} - \mu_{i-1,1} \ge k \Delta_{\min,0}, i = 1, \dots I,$$

где $d_i = \mu_{i,1} - \mu_{i,0}$ – искомое отклонение *i*-й границы $\mu_{i,1}$ АРК1 от АРК0; $w_i = 1/\min(\Delta_{i,0}, \Delta_{i+1,0})$ – вес, обратный длине минимального из интервалов, прилегающих к точке $\mu_{i,0}$; $\Delta_p = p_1^{APK0} - p_1$ – ошибка АРКО для первого момента (если $\mu_{0,0} = -1$ или $\mu_{I,0} = -1$, то соответственно необходимо положить $\delta_0 = 0$ или $\delta_I = 0$); $\Delta_{\min,0}$ – минимальная длина равновероятного отрезка в АРКО.

РЕЗУЛЬТАТЫ РАСЧЕТА ТЕСТОВЫХ ЗАДАЧ

Аналитические бенчмарки

Предложенный в предыдущем разделе метод был проверен на серии задач в цилиндрической геометрии с линейной анизотропией, для которых в [20] были аналитически определены критические размеры. Макроскопические сечения задач серии представлены в табл. 1. Расчеты выполнялись для варианта со средним числом нейтронов, образующихся при одном столкновении с ядром среды c = 1,01, при трех значениях среднего косинуса угла рассеяния $\overline{\mu} = 0,1, 0,3, 0,5$.

Для каждого из вариантов по методу Монте-Карло выполнялся расчет коэффициента размножения бесконечного цилиндра с радиусом, приведенным в работе [20]. Расчеты выполнялись с различным числом равновероятных отрезков в аппроксимации индикатрисы рассеяния как с коррекцией границ отрезков для уточ-

Таблица 1

Макроскопические сечения аналитических бенчмарков с линейно анизотропным рассеянием в цилиндрической геометрии

Вариант	μ	Σ_t	Σ_{c}	$\nu \Sigma_{f}$	$\Sigma_{_{s,0}}$	$\Sigma_{_{s,1}}$
1	0,1	1	5,6·10 ⁻²	1,1·10 ⁻¹	0,9	3,03·10 ⁻¹
2	0,3	1	5,6·10 ⁻²	1,1·10 ⁻¹	0,9	9,09·10 ⁻¹
3	0,5	1	5,6·10 ⁻²	1,1·10 ⁻¹	0,9	1,515

нения значения первого углового момента, так и без коррекции. Результаты расчетов представлены в табл. 2. Статистическая погрешность расчета k_{eff} во всех случаях составляла ±0.00012 при доверительной вероятности 95%. Расчет по программе метода характеристик MCCG3D дал значение 0.99999 для всех задач.

Таблица 2

К_{еff}, рассчитанное по методу Монте-Карло, при различных значениях среднего косинуса рассеяния µдля аппроксимаций равновероятными косинусами АРКО и АРК1

π	0,1		0,3		0,5	
Число интервалов	АРКО	APK1	АРКО	APK1	АРКО	APK1
3	1.00104	0.99994	1.00649	1.00013	1.00705	0.99986
5	1.00042	0.99996	1.00318	0.99994	1.00577	1.00010
10	0.99996	1.00000	1.00122	0.99992	1.00512	0.99991
20	-	-	1.00036	0.99984	1.00496	0.99990
40	-	-	1.00009	0.99981	1.00486	0.99988

Как видно из представленных результатов, в задачах с положительной индикатрисой рассеяния ($\overline{\mu} = 0.1$ и $\overline{\mu} = 0.3$) удовлетворительной точности расчета можно добиться и без коррекции границ равновероятных интервалов, просто увеличивая количество интервалов. В задаче же со знакопеременной индикатрисой ситуация принципиально иная – даже при использовании сорока равновероятных интервалов не удается существенно повысить точность результатов. В то же время при использовании коррекции границ равновероятных интервалов по методике, обеспечивающей сохранение первого углового момента, хорошее согласие с аналитическим решением может быть достигнуто уже при использовании трех равновероятных интервалов как для положительных, так и для знакопеременных индикатрис рассеяния. На рисунке 1 приведен вид индикатрис рассеяния, получаемых для АРКО и для двух вариантов расчетов АРК1: k = 0.5 и с k = 0.9 для значения среднего косинуса угла рассеяния $\overline{\mu} = 0.5$

Ячейка PWR

В качестве второй тестовой задачи была выбрана ячейка реактора PWR. Расчетная модель представлена на рис. 2. Для этой модели по программе UNK [21] подготовлены 51-групповые сечения, в которых константы для воды подготовлены в P_1 -приближении. Расчет k_{eff} для данной ячейки при использовании программы метода характеристик MCCG3D с экстраполяцией на бесконечно мелкую про-

Рис. 1. Индикатриса рассеяния для аналитической задачи: ◆ - Р1; ■ -АРК1, *k* = 0.5; ▲ - АРК0; ● - АРК1, *k* = 0.9

Рис. 2. Геометрия ячейки PWR

Результаты расчетов keff для ячейки PWR

Таблица З

Метод	$k_{_{eff}}$	Интервал $k_{_{eff}}$ (2 σ)	
MCCG3D, M1 (228 ячеек)	1.40439		
MCCG3D, M2 (1602 ячейки)	1.40390		
MCCG3D, M3 (3846 ячеек)	1.40380		
MCCG3D, экстраполяция	1.40370		
АРКО	1.40198±0.00025	1.40149 - 1.40247	
APK1, k = 0.5	1.40285±0.00025	1.40237 – 1.40336	

странственную и угловую сетки дает значение 1.40370. При использовании сечений, подготовленных по методике *АРК*0, k_{eff} при помощи программы MCNP4C составил 1.40198±0,00025 (интервал от 1.40149 до 1.40247 с доверительной вероятностью 95%). После корректировки сечений по методике, обеспечивающей со-

хранение первого углового момента сечения рассеяния (АРК1), коэффициент размножения, рассчитанный для той же задачи, составил 1.40285±0,00025 (интервал от 1.40237 до 1.40336 с доверительной вероятностью 95%).

Таким образом, в данной задаче обе методики (АРКО и АРК1) обеспечивают более чем удовлетворительное согласие k_{eff} расчета по методу Монте-Карло с детерминистическим расчетом по методу характеристик. Корректировка сечения с сохранением первого момента анизотропии рассеяния заметно улучшает согласие.

ЗАКЛЮЧЕНИЕ

В работе представлен новый алгоритм преобразования групповых сечений для метода Монте-Карло с представление анизотропии рассеяния в приближении равновероятных косинусов (АРКО) с сохранением первого углового момента сечения рассеяния. Продемонстрировано существенное улучшение согласованности результатов по детерминистическим программам и Монте-Карло при сохранении угловых моментов сечения рассеяния в процессе преобразования групповых констант в формат Монте-Карло.

Разработанная методика использована в методических исследованиях для сравнения результатов расчетов по программе MCCG3D с результатами, полученными при помощи программы MCNP на одинаковых константах, и позволяет повысить надежность покомпонентного анализа погрешностей и отделить методическую погрешность метода характеристик от методической погрешности малогрупповых констант с анизотропией рассеяния.

В качестве дальнейших направлений исследований мы предполагаем развитие метода для учета большего количества угловых моментов, проведение анализа применимости метода к задачам переноса фотонов и сравнения различных методов ограничения плотности углового распределения индикатрисы.

Работа выполнена при поддержке проекта МНТЦ-3814.

Литература

1. Smith K. Reactor Core Methods, M&C 2003, April 6-10, 2003, Gatlinburg, Tennessee.

2. *Martin B*. Advances in Monte Carlo Methods for Global Reactor Analysis/M&C+SNA 2007 (Monterey, April 15-19, 2007, University of Michigan).

3. *Lewis E.E.* Toward Whole-Core Neutron Transport Without Spatial Homogenization/M&C-2009. – Monteray.

4. *Morel J.E., Tooley J.P., Blamer B.J.* Exponentially-Convergent Monte-Carlo via Finite-Element Trial Spaces/Int. Conf. M&C-2011 (Rio de Janeiro, Brasil, May 8-12, 2011). On CD-ROM.

5. *Karriem Z., Ivanov K., Zamonsky O.* Development of a Consystent Monte Carlo – Deterministic Transport Methology Based on the Method of Characteristics and MCNP5/Int. Conf. M&C-2011 (Rio de Janeiro, Brasil, May 8-12, 2011). On CD-ROM.

6. *Walters E., Larsen Ed.W., and Martin W.R.* Generalized Hybrid Monte Carlo – CMFD Method for Fission Source Convergency/Int. Conf. M&C-2011 (Rio de Janeiro, Brasil, May 8-12, 2011). On CD-ROM.

7. Suslov I.R., Melnikov K.G. WWER Benchmarking Characteristics vs. Monte-Carlo/20-th International Conference on Transport Theory (Obninsk, Russia, July 22-28, 2007).

8. *Hoogenboom J.E., Khotylev V.A., Tholammaki J.M.* Generation of Multi-Group Cross-Section and Scattering Matrices with the Monte-Carlo Code MCNP5/Int. Conf. M&C+SNA 2007 (Monteray, California, April 15-19).

9. *Lepponen J.* PSG2 / Serpent – a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code Methodology. Users Manual – Validation Report 2009.

ΦИЗИКА И ТЕХНИКА РЕАКТОРОВ

10. *Lepponen J*. On the Feasibility of a Homogenised multi-group Monte-Carlo Method in Reactor Analysis/PHYSOR-2008 (Interlake, Switzerland, September 14-19, 2000).

11. *Kuijper J.C., van der Marck S.C. and Hogenbirk A.* Using homogenized macroscopic group cross sections in continuous-energy Monte Carlo neutron transport calculations with MCNP/Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications, M&C+SNA 2007 (Monterey, California, April 15-19, 2007).

12. Le Tellier R., Hebert A., Santamarina A. and Litaize O. Benchmarking of the Characteristics Method Combined with Advanced Self-Shielding Models on BWR-MOX Assemblies/PHYSOR-2006, ANS Topical Meeting on Reactor Physics (Vancouver, BC, Canada, September 10-14, 2006).

13. Wagner J.C., Redmond II E.L., Palmtag S.P. and Hendricks J.S. MCNP: Multigroup/Adjoint Capabilities. Los Alamos National Laboratory report, LA-12704, December 1993.

14. Коробейников В.В., Коробейникова Л.В., Николаев М.Н., Цибуля А.М. Аппроксимация угловых распределений упругорассеянных нейтронов/Препринт ФЭИ-1445. – Обнинск, 1983.

15. *Suslov I.R.* MCCG3D – 3D Discrete Ordinates Transport Code for Unstructured Grid/ State of Art and Future Development/Proc. Conf. «Neutronics-96». – Obninsk: IPPE, 1996. – P. 162.

16. *Suslov I.R.* Improvements in the Long Characteristics Method and Their Efficiency for Deep Penetration Calculations//Progress in Nuclear Energy. – 2001. – Vol. 39. – P. 223.

17. Benchmark on Deterministic Transport Calculations without Spatial Homogenisation A 2-D /3-D MOX Fuel Assembly Benchmark. NEA/NSC/DOC (2003)16.

18. *Klimov A.D. et.al.* System Analysis of Nuclear Safety of VVER Reactor with MOX Fuel Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications. Avignon, France, September 12-15, 2005.

19. TWODANT USERS GUIDE. Deterministic Transport Team Transport Method Group, XTM, Los Alamos National Laboratory. 1997.

20. *Sanches R., Ganapol B.G.* Benchmark values for monoenergetic neutron transport in onedimensional cylindrical geometry with linearly anisotropic scattering//Nuclear Science and Engineering. – 1984. – Vol. 1. – P. 61.

21. Давиденко В.Д., Цибульский В.Ф. UNK – программа детального расчета спектра нейтронов в элементарной ячейке/Сб. тр. семинара «Нейтроника-97». – Обнинск, 1998. – С. 90.

Поступила в редакцию 3.09.2012

ABSTRACTS OF THE PAPERS

УДК 621.039.51

New Technique to Reformat Multigroup Cross-Sections for Monte-Carlo Calculation \I.R. Suslov, I.V. Tormyshev, K.G. Mel'nikov; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering). – Obninsk, 2012. – 8 pages, 3 tables, 2 illustrations. – References, 21 titles.

New method to calculate equiprobability bins from Legendre expansion scattering cross-sections is proposed. The method uses a correction of equiprobability bins boundaries to provide a conservation of the first angular moment. The code CRSRD-ST to reformat cross sections from DTF to ACE format with proposed technique is developed. Numerical results shows the method proposed significantly improves an agreement between deterministic and Monte-Carlo calculations.

УДК 621.039.51

Boundary Resonance Effects in the Fast Reactor with the Heterogeneous Core \A.A. Bezborodov, E.V. Dolgov, D.A. Klinov, V.V. Kolesov, V.Yu. Stogov, I.R. Suslov, V.I. Folomeev; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering). – Obninsk, 2012. – 10 pages, 2 tables, 4 illustrations. – References, 10 titles.

Boundary resonance effects is considering with the application of the high-speed subgroup approximation technique employment in practical tasks for description of neutron cross-sections interactions with media nuclides nuclei in resonance part of energy for physical simulation of the fast reactor plants with the heterogeneous core.

УДК 621.039.51

Energy Deposition Evaluation in the Target with Uranium-Containing Material for the ⁹⁹Mo Production in WWR-C Reactor with the Impruved Design of Target\O.Yu. Kochnov, V.V. Kolesov, R.V. Fomin; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering). – Obninsk, 2012. – 7 pages, 2 tables, 9 illustrations. – References, 2 titles.

Increased production of the ⁹⁹Mo in the context of rising global demand is an urgent task. The new type of target for ⁹⁹Mo producing in WWR-c reactor technological channels was developed. A series of calculations to estimate energy deposition for standard and modified target were done. A considerable energy deposition increasing in modified target was found.

УДК 621.039.56

Method of ¹⁶N Generation for Test of Radiation Controlled Cannels on Nuclear Power Stations with Water-Cooled Reactors \V.A. Khryachkov, I.P. Bondarenko, P.A. Dvornikov, B.V. Zhuravlev, S.N. Kovtun, T.A. Khromyleva, A.V. Pavlov, N.G. Roschin; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering). – Obninsk, 2012. – 5 pages, 3 illustrations. – References, 3 titles.

The preferences of ${}^{19}F(n,\alpha){}^{16}N$ nuclear reaction use for radiation control channels test on watercooled power reactors are analyzed. The new measurements for more accurate determination of ${}^{19}F(n,\alpha){}^{16}N$ reaction cross section energy dependence have been carried out. A set of new methods for background reducing and improvement of events determination reliability was developed.

УДК 621.039.524.44:697.93

Calculation-based Justification for the Algorithm of Pipelines Leak Control by Air Humidity \P.A. Dvornikov, S.N. Kovtun, A.A. Budarin, V.P. Polionov, N.N. Titarenko, D.M. Shvetsov, N.G. Roshchin, A.L. Matveev, E.L. Matveev; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering). – Obninsk, 2012. – 10 pages, 9 tables, 3 illustrations. – References, 9 titles.

Dynamic processes in thermal insulation of power plants pipelines caused by depressurization are the goal of the research. Simulation of various leaks was realized by using adapted computer code KUPOL-M developed in SSC RF IPPE.

УДК 621.039.58

Analysis of the Errors Committed by NPP MCR Operators during Implementation of Operating Procedures N.V. Pleshakova, A.N. Anokhin; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya